Clean push: Removed heavy files & added only latest snapshot

This commit is contained in:
2025-07-26 05:16:12 +05:30
commit acf84e8767
250 changed files with 58564 additions and 0 deletions

View File

@@ -0,0 +1,471 @@
"""
Final Video Controller for Automatic Traffic Red-Light Violation Detection
- Uses detection_openvino.py for OpenVINO YOLOv11n detection
- Crosswalk (zebra crossing) detection using RANSAC/white-line logic
- Vehicle tracking using OpenCV trackers
- Violation logic: detects vehicles crossing the violation line on red
- Visualization and video output
"""
import sys
import os
sys.path.append(os.path.abspath(os.path.join(os.path.dirname(__file__), '..', '..', '..')))
import cv2
import numpy as np
from sklearn import linear_model
# --- Crosswalk (Zebra Crossing) Detection ---
def detect_crosswalk(frame):
"""Detect crosswalk (zebra crossing) in the frame. Returns dict with detection status and y position."""
# White color mask
lower = np.array([170, 170, 170])
upper = np.array([255, 255, 255])
mask = cv2.inRange(frame, lower, upper)
# Erode to remove noise
erode_size = max(1, frame.shape[0] // 30)
erode_structure = cv2.getStructuringElement(cv2.MORPH_RECT, (erode_size, 1))
eroded = cv2.erode(mask, erode_structure, (-1, -1))
# Find contours
contours, _ = cv2.findContours(eroded, cv2.RETR_TREE, cv2.CHAIN_APPROX_NONE)
left_points, right_points = [], []
bw_width = 170
crosswalk_y = None
for cnt in contours:
x, y, w, h = cv2.boundingRect(cnt)
if w > bw_width:
left_points.append([x, y])
right_points.append([x + w, y])
# RANSAC fit
crosswalk_detected = False
if len(left_points) > 5 and len(right_points) > 5:
left_points = np.array(left_points)
right_points = np.array(right_points)
model_l = linear_model.RANSACRegressor().fit(left_points[:, 0:1], left_points[:, 1])
model_r = linear_model.RANSACRegressor().fit(right_points[:, 0:1], right_points[:, 1])
# If the lines are roughly parallel and horizontal, assume crosswalk
slope_l = model_l.estimator_.coef_[0]
slope_r = model_r.estimator_.coef_[0]
if abs(slope_l) < 0.3 and abs(slope_r) < 0.3:
crosswalk_detected = True
crosswalk_y = int(np.median(left_points[:, 1]))
return {'crosswalk_detected': crosswalk_detected, 'crosswalk_y': crosswalk_y}
def get_traffic_light_color(frame, bbox):
"""Detect traffic light color in the given bounding box (x_min, y_min, x_max, y_max). Returns 'red', 'yellow', 'green', or 'unknown'."""
x_min, y_min, x_max, y_max = bbox
roi = frame[max(0, y_min):y_max, max(0, x_min):x_max]
if roi.size == 0:
return 'unknown'
hsv = cv2.cvtColor(roi, cv2.COLOR_BGR2HSV)
mask_red1 = cv2.inRange(hsv, (0, 70, 50), (10, 255, 255))
mask_red2 = cv2.inRange(hsv, (170, 70, 50), (180, 255, 255))
mask_red = cv2.bitwise_or(mask_red1, mask_red2)
mask_yellow = cv2.inRange(hsv, (15, 70, 50), (35, 255, 255))
mask_green = cv2.inRange(hsv, (40, 70, 50), (90, 255, 255))
red = np.sum(mask_red)
yellow = np.sum(mask_yellow)
green = np.sum(mask_green)
if max(red, yellow, green) == 0:
return 'unknown'
if red >= yellow and red >= green:
return 'red'
elif yellow >= green:
return 'yellow'
else:
return 'green'
##model manager working
import os
import sys
import time
import cv2
import numpy as np
from pathlib import Path
from typing import Dict, List, Tuple, Optional
# Add parent directory to path for imports
current_dir = Path(__file__).parent.parent.parent
sys.path.append(str(current_dir))
# Import OpenVINO modules
from detection_openvino import OpenVINOVehicleDetector
from red_light_violation_pipeline import RedLightViolationPipeline
# Import from our utils package
from utils.helpers import bbox_iou
class ModelManager:
"""
Manages OpenVINO models for traffic detection and violation monitoring.
Only uses RedLightViolationPipeline for all violation/crosswalk/traffic light logic.
"""
def __init__(self, config_file: str = None):
"""
Initialize model manager with configuration.
Args:
config_file: Path to JSON configuration file
"""
self.config = self._load_config(config_file)
self.detector = None
self.violation_pipeline = None # Use RedLightViolationPipeline only
self.tracker = None
self._initialize_models()
def _load_config(self, config_file: Optional[str]) -> Dict:
"""
Load configuration from file or use defaults.
Args:
config_file: Path to JSON configuration file
Returns:
Configuration dictionary
"""
import json
default_config = {
"detection": {
"confidence_threshold": 0.5,
"enable_ocr": True,
"enable_tracking": True,
"model_path": None
},
"violations": {
"red_light_grace_period": 2.0,
"stop_sign_duration": 2.0,
"speed_tolerance": 5
},
"display": {
"max_display_width": 800,
"show_confidence": True,
"show_labels": True,
"show_license_plates": True
},
"performance": {
"max_history_frames": 1000,
"cleanup_interval": 3600
}
}
if config_file and os.path.exists(config_file):
try:
with open(config_file, 'r') as f:
loaded_config = json.load(f)
# Merge with defaults (preserving loaded values)
for section in default_config:
if section in loaded_config:
default_config[section].update(loaded_config[section])
except Exception as e:
print(f"Error loading config: {e}")
return default_config
def _initialize_models(self):
"""Initialize OpenVINO detection and violation models."""
try:
# Find best model path
model_path = self.config["detection"].get("model_path")
if not model_path or not os.path.exists(model_path):
model_path = self._find_best_model_path()
if not model_path:
print("❌ No model found")
return
# Initialize detector
print(f"✅ Initializing OpenVINO detector with model: {model_path}")
device = self.config["detection"].get("device", "AUTO")
print(f"✅ Using inference device: {device}")
self.detector = OpenVINOVehicleDetector(
model_path=model_path,
device=device,
confidence_threshold=self.config["detection"]["confidence_threshold"]
)
# Use only RedLightViolationPipeline for violation/crosswalk/traffic light logic
self.violation_pipeline = RedLightViolationPipeline(debug=True)
print("✅ Red light violation pipeline initialized (all other violation logic removed)")
# Initialize tracker if enabled
if self.config["detection"]["enable_tracking"]:
try:
from deep_sort_realtime.deepsort_tracker import DeepSort
# Use optimized OpenVINO embedder if available
use_optimized_embedder = True
embedder = None
if use_optimized_embedder:
try:
# Try importing our custom OpenVINO embedder
from utils.embedder_openvino import OpenVINOEmbedder
print(f"✅ Initializing optimized OpenVINO embedder on {device}")
# Set model_path explicitly to use the user-supplied model
script_dir = Path(__file__).parent.parent
model_file_path = None
# Try the copy version first (might be modified for compatibility)
copy_model_path = script_dir / "mobilenetv2 copy.xml"
original_model_path = script_dir / "mobilenetv2.xml"
if copy_model_path.exists():
model_file_path = str(copy_model_path)
print(f"✅ Using user-supplied model: {model_file_path}")
elif original_model_path.exists():
model_file_path = str(original_model_path)
print(f"✅ Using user-supplied model: {model_file_path}")
embedder = OpenVINOEmbedder(
model_path=model_file_path,
device=device,
half=True # Use FP16 for better performance
)
except Exception as emb_err:
print(f"⚠️ OpenVINO embedder failed: {emb_err}, falling back to default")
# Initialize tracker with embedder based on available parameters
if embedder is None:
print("⚠️ No embedder available, using DeepSORT with default tracking")
else:
print("✅ Initializing DeepSORT with custom embedder")
# Simple initialization without problematic parameters
self.tracker = DeepSort(
max_age=30,
n_init=3,
nn_budget=100,
embedder=embedder
)
print("✅ DeepSORT tracker initialized")
except ImportError:
print("⚠️ DeepSORT not available")
self.tracker = None
print("✅ Models initialized successfully")
except Exception as e:
print(f"❌ Error initializing models: {e}")
import traceback
traceback.print_exc()
def _find_best_model_path(self, base_model_name: str = None) -> Optional[str]:
"""
Find best available model file in workspace.
Args:
base_model_name: Base model name without extension
Returns:
Path to model file or None
"""
# Select model based on device if base_model_name is not specified
if base_model_name is None:
device = self.config["detection"].get("device", "AUTO")
if device == "CPU" or device == "AUTO":
# Use yolo11n for CPU - faster, lighter model
base_model_name = "yolo11n"
print(f"🔍 Device is {device}, selecting {base_model_name} model (optimized for CPU)")
else:
# Use yolo11x for GPU - larger model with better accuracy
base_model_name = "yolo11x"
print(f"🔍 Device is {device}, selecting {base_model_name} model (optimized for GPU)")
# Check if the openvino_models directory exists in the current working directory
cwd_openvino_dir = Path.cwd() / "openvino_models"
if cwd_openvino_dir.exists():
direct_path = cwd_openvino_dir / f"{base_model_name}.xml"
if direct_path.exists():
print(f"✅ Found model directly in CWD: {direct_path}")
return str(direct_path.absolute())
# Check for absolute path to openvino_models (this is the most reliable)
absolute_openvino_dir = Path("D:/Downloads/finale6/khatam/openvino_models")
if absolute_openvino_dir.exists():
direct_path = absolute_openvino_dir / f"{base_model_name}.xml"
if direct_path.exists():
print(f"✅ Found model at absolute path: {direct_path}")
return str(direct_path.absolute())
# Try relative to the model_manager.py file
openvino_models_dir = Path(__file__).parent.parent.parent / "openvino_models"
direct_path = openvino_models_dir / f"{base_model_name}.xml"
if direct_path.exists():
print(f"✅ Found model in app directory: {direct_path}")
return str(direct_path.absolute())
# Check for model in folder structure within openvino_models
subfolder_path = openvino_models_dir / f"{base_model_name}_openvino_model" / f"{base_model_name}.xml"
if subfolder_path.exists():
print(f"✅ Found model in subfolder: {subfolder_path}")
return str(subfolder_path.absolute())
# Try other common locations
search_dirs = [
".",
"..",
"../models",
"../rcb",
"../openvino_models",
f"../{base_model_name}_openvino_model",
"../..", # Go up to project root
"../../openvino_models", # Project root / openvino_models
]
model_extensions = [
(f"{base_model_name}.xml", "OpenVINO IR direct"),
(f"{base_model_name}_openvino_model/{base_model_name}.xml", "OpenVINO IR"),
(f"{base_model_name}.pt", "PyTorch"),
]
for search_dir in search_dirs:
search_path = Path(__file__).parent.parent / search_dir
if not search_path.exists():
continue
for model_file, model_type in model_extensions:
model_path = search_path / model_file
if model_path.exists():
print(f"✅ Found {model_type} model: {model_path}")
return str(model_path.absolute())
print(f"❌ No model found for {base_model_name}")
return None
def detect(self, frame: np.ndarray) -> List[Dict]:
"""
Detect objects in frame.
Args:
frame: Input video frame
Returns:
List of detection dictionaries
"""
if self.detector is None:
print("WARNING: No detector available")
return []
try:
# Use a lower confidence threshold for better visibility
conf_threshold = max(0.3, self.config["detection"].get("confidence_threshold", 0.5))
detections = self.detector.detect_vehicles(frame, conf_threshold=conf_threshold)
# Add debug output
if detections:
print(f"DEBUG: Detected {len(detections)} objects: " +
", ".join([f"{d['class_name']} ({d['confidence']:.2f})" for d in detections[:3]]))
# Print bounding box coordinates of first detection
if len(detections) > 0:
print(f"DEBUG: First detection bbox: {detections[0]['bbox']}")
else:
print("DEBUG: No detections in this frame")
return detections
except Exception as e:
print(f"❌ Detection error: {e}")
import traceback
traceback.print_exc()
return []
def update_tracking(self, detections: List[Dict], frame: np.ndarray) -> List[Dict]:
"""
Update tracking information for detections.
Args:
detections: List of detections
frame: Current video frame
Returns:
Updated list of detections with tracking info
"""
if not self.tracker or not detections:
return detections
try:
# Format detections for DeepSORT
tracker_dets = []
for det in detections:
if 'bbox' not in det:
continue
bbox = det['bbox']
if len(bbox) < 4:
continue
x1, y1, x2, y2 = bbox
w = x2 - x1
h = y2 - y1
if w <= 0 or h <= 0:
continue
conf = det.get('confidence', 0.0)
class_name = det.get('class_name', 'unknown')
tracker_dets.append(([x1, y1, w, h], conf, class_name))
# Update tracks
if tracker_dets:
tracks = self.tracker.update_tracks(tracker_dets, frame=frame)
# Associate tracks with detections
for track in tracks:
if not track.is_confirmed():
continue
track_id = track.track_id
ltrb = track.to_ltrb()
for det in detections:
if 'bbox' not in det:
continue
bbox = det['bbox']
if len(bbox) < 4:
continue
dx1, dy1, dx2, dy2 = bbox
iou = bbox_iou((dx1, dy1, dx2, dy2), tuple(map(int, ltrb)))
if iou > 0.5:
det['track_id'] = track_id
break
return detections
except Exception as e:
print(f"❌ Tracking error: {e}")
return detections
def update_config(self, new_config: Dict):
"""
Update configuration parameters.
Args:
new_config: New configuration dictionary
"""
if not new_config:
return
# Store old device setting to check if it changed
old_device = self.config["detection"].get("device", "AUTO") if "detection" in self.config else "AUTO"
# Update configuration
for section in new_config:
if section in self.config:
self.config[section].update(new_config[section])
else:
self.config[section] = new_config[section]
# Check if device changed - if so, we need to reinitialize models
new_device = self.config["detection"].get("device", "AUTO")
device_changed = old_device != new_device
if device_changed:
print(f"📢 Device changed from {old_device} to {new_device}, reinitializing models...")
# Reinitialize models with new device
self._initialize_models()
return
# Just update detector confidence threshold if device didn't change
if self.detector:
conf_thres = self.config["detection"].get("confidence_threshold", 0.5)
self.detector.conf_thres = conf_thres