Clean push: Removed heavy files & added only latest snapshot

This commit is contained in:
2025-07-26 05:16:12 +05:30
commit acf84e8767
250 changed files with 58564 additions and 0 deletions

View File

@@ -0,0 +1,414 @@
import cv2
import numpy as np
from typing import Dict, List, Tuple, Any, Optional
from PySide6.QtGui import QImage, QPixmap
from PySide6.QtCore import Qt
# Color mapping for traffic-related classes
COLORS = {
'person': (255, 165, 0), # Orange
'bicycle': (255, 0, 255), # Magenta
'car': (0, 255, 0), # Green
'motorcycle': (255, 255, 0), # Cyan
'bus': (0, 0, 255), # Red
'truck': (0, 128, 255), # Orange-Blue
'traffic light': (0, 165, 255), # Orange
'stop sign': (0, 0, 139), # Dark Red
'parking meter': (128, 0, 128), # Purple
'default': (0, 255, 255) # Yellow as default
}
# Enhanced class colors for consistent visualization
def get_enhanced_class_color(class_name: str, class_id: int = -1) -> Tuple[int, int, int]:
"""
Get color for class with enhanced mapping (traffic classes only)
Args:
class_name: Name of the detected class
class_id: COCO class ID
Returns:
BGR color tuple
"""
# Only traffic class IDs/colors
enhanced_colors = {
0: (255, 165, 0), # person - Orange
1: (255, 0, 255), # bicycle - Magenta
2: (0, 255, 0), # car - Green
3: (255, 255, 0), # motorcycle - Cyan
4: (0, 0, 255), # bus - Red
5: (0, 128, 255), # truck - Orange-Blue
6: (0, 165, 255), # traffic light - Orange
7: (0, 0, 139), # stop sign - Dark Red
8: (128, 0, 128), # parking meter - Purple
}
# Get color from class name if available
if class_name and class_name.lower() in COLORS:
return COLORS[class_name.lower()]
# Get color from class ID if available
if isinstance(class_id, int) and class_id in enhanced_colors:
return enhanced_colors[class_id]
# Default color
return COLORS['default']
def enhanced_draw_detections(frame: np.ndarray, detections: List[Dict],
draw_labels: bool = True, draw_confidence: bool = True) -> np.ndarray:
"""
Enhanced version of draw_detections with better visualization
Args:
frame: Input video frame
detections: List of detection dictionaries
draw_labels: Whether to draw class labels
draw_confidence: Whether to draw confidence scores
Returns:
Annotated frame
"""
if frame is None or not isinstance(frame, np.ndarray) or frame.size == 0:
print("Warning: Invalid frame provided to enhanced_draw_detections")
return np.zeros((300, 300, 3), dtype=np.uint8) # Return blank frame as fallback
annotated_frame = frame.copy()
# Handle case when detections is None or empty
if detections is None or len(detections) == 0:
return annotated_frame
# Get frame dimensions for validation
h, w = frame.shape[:2]
for detection in detections:
if not isinstance(detection, dict):
continue
try:
# Skip detection if it doesn't have bbox or has invalid confidence
if 'bbox' not in detection:
continue
# Skip if confidence is below threshold (don't rely on external filtering)
confidence = detection.get('confidence', 0.0)
if confidence < 0.1: # Apply a minimal threshold to ensure we're not drawing noise
continue
bbox = detection['bbox']
class_name = detection.get('class_name', 'unknown')
class_id = detection.get('class_id', -1)
# Get color for class
color = get_enhanced_class_color(class_name, class_id)
# Ensure bbox has enough coordinates and they are numeric values
if len(bbox) < 4 or not all(isinstance(coord, (int, float)) for coord in bbox[:4]):
continue
# Convert coordinates to integers
try:
x1, y1, x2, y2 = map(int, bbox[:4])
except (ValueError, TypeError):
print(f"Warning: Invalid bbox format: {bbox}")
continue
# Validate coordinates are within frame bounds
x1 = max(0, min(x1, w-1))
y1 = max(0, min(y1, h-1))
x2 = max(0, min(x2, w))
y2 = max(0, min(y2, h))
# Ensure x2 > x1 and y2 > y1 (at least 1 pixel width/height)
if x2 <= x1 or y2 <= y1:
# Instead of skipping, fix the coordinates to ensure at least 1 pixel width/height
x2 = max(x1 + 1, x2)
y2 = max(y1 + 1, y2)
# Draw bounding box with thicker line for better visibility
cv2.rectangle(annotated_frame, (x1, y1), (x2, y2), color, 2)
# Prepare label text
label_parts = []
if draw_labels:
# Display proper class name
display_name = class_name.replace('_', ' ').title()
label_parts.append(display_name)
# Add tracking ID if available
track_id = detection.get('track_id')
if track_id is not None:
label_parts[-1] += f" #{track_id}"
if draw_confidence and confidence > 0:
label_parts.append(f"{confidence:.2f}")
# Draw traffic light color indicator if available
if class_name == 'traffic light' and 'traffic_light_color' in detection:
light_color = detection['traffic_light_color']
# Add traffic light color to label
if light_color != 'unknown':
# Set color indicator based on traffic light state
if light_color == 'red':
color_indicator = (0, 0, 255) # Red
label_parts.append("🔴 RED")
elif light_color == 'yellow':
color_indicator = (0, 255, 255) # Yellow
label_parts.append("🟡 YELLOW")
elif light_color == 'green':
color_indicator = (0, 255, 0) # Green
label_parts.append("🟢 GREEN")
# Draw traffic light visual indicator (circle with detected color)
circle_y = y1 - 15
circle_x = x1 + 10
circle_radius = 10
if light_color == 'red':
cv2.circle(annotated_frame, (circle_x, circle_y), circle_radius, (0, 0, 255), -1)
elif light_color == 'yellow':
cv2.circle(annotated_frame, (circle_x, circle_y), circle_radius, (0, 255, 255), -1)
elif light_color == 'green':
cv2.circle(annotated_frame, (circle_x, circle_y), circle_radius, (0, 255, 0), -1)
# Draw label if we have any text
if label_parts:
label = " ".join(label_parts)
try:
# Get text size for background
(text_width, text_height), baseline = cv2.getTextSize(
label, cv2.FONT_HERSHEY_SIMPLEX, 0.6, 2
)
# Ensure label position is within frame
text_y = max(text_height + 10, y1)
# Draw label background (use colored background)
bg_color = tuple(int(c * 0.7) for c in color) # Darker version of box color
cv2.rectangle(
annotated_frame,
(x1, text_y - text_height - 10),
(x1 + text_width + 10, text_y),
bg_color,
-1
)
# Draw label text (white text on colored background)
cv2.putText(
annotated_frame,
label,
(x1 + 5, text_y - 5),
cv2.FONT_HERSHEY_SIMPLEX,
0.6,
(255, 255, 255), # White text
2
)
except Exception as e:
print(f"Error drawing label: {e}")
except Exception as e:
print(f"Error drawing detection: {e}")
continue
return annotated_frame
def draw_performance_overlay(frame: np.ndarray, metrics: Dict) -> np.ndarray:
"""
Draw enhanced performance metrics overlay on the frame.
Args:
frame: Input video frame
metrics: Dictionary of performance metrics
Returns:
Annotated frame
"""
if frame is None or not isinstance(frame, np.ndarray):
return np.zeros((300, 300, 3), dtype=np.uint8)
annotated_frame = frame.copy()
height, width = annotated_frame.shape[:2]
# Create semi-transparent overlay for metrics panel
overlay = annotated_frame.copy()
# Calculate panel size based on metrics count
text_height = 25
padding = 10
metrics_count = len(metrics)
panel_height = metrics_count * text_height + 2 * padding
panel_width = 220 # Fixed width
# Position panel at bottom left
panel_x = 10
panel_y = height - panel_height - 10
# Draw background panel with transparency
cv2.rectangle(
overlay,
(panel_x, panel_y),
(panel_x + panel_width, panel_y + panel_height),
(0, 0, 0),
-1
)
# Apply transparency
alpha = 0.7
cv2.addWeighted(overlay, alpha, annotated_frame, 1 - alpha, 0, annotated_frame)
# Draw metrics with custom formatting
text_y = panel_y + padding + text_height
for metric, value in metrics.items():
# Format metric name and value
metric_text = f"{metric}: {value}"
# Choose color based on metric type
if "FPS" in metric:
color = (0, 255, 0) # Green for FPS
elif "ms" in str(value):
color = (0, 255, 255) # Yellow for timing metrics
else:
color = (255, 255, 255) # White for other metrics
# Draw text with drop shadow for better readability
cv2.putText(
annotated_frame,
metric_text,
(panel_x + padding + 1, text_y + 1),
cv2.FONT_HERSHEY_SIMPLEX,
0.6,
(0, 0, 0), # Black shadow
2
)
cv2.putText(
annotated_frame,
metric_text,
(panel_x + padding, text_y),
cv2.FONT_HERSHEY_SIMPLEX,
0.6,
color,
2
)
text_y += text_height
return annotated_frame
def resize_frame_for_display(frame: np.ndarray, max_width: int = 1280, max_height: int = 720) -> np.ndarray:
"""
Resize frame for display while maintaining aspect ratio.
Args:
frame: Input video frame
max_width: Maximum display width
max_height: Maximum display height
Returns:
Resized frame
"""
if frame is None:
return np.zeros((300, 300, 3), dtype=np.uint8)
height, width = frame.shape[:2]
# No resize needed if image is already smaller than max dimensions
if width <= max_width and height <= max_height:
return frame
# Calculate scale factor to fit within max dimensions
scale_width = max_width / width if width > max_width else 1.0
scale_height = max_height / height if height > max_height else 1.0
# Use the smaller scale to ensure image fits within bounds
scale = min(scale_width, scale_height)
# Resize using calculated scale
new_width = int(width * scale)
new_height = int(height * scale)
return cv2.resize(frame, (new_width, new_height), interpolation=cv2.INTER_AREA)
def enhanced_cv_to_qimage(cv_img: np.ndarray) -> QImage:
"""
Enhanced converter from OpenCV image to QImage with robust error handling.
Args:
cv_img: OpenCV image (numpy array)
Returns:
QImage object
"""
if cv_img is None or not isinstance(cv_img, np.ndarray):
print("Warning: Invalid image in enhanced_cv_to_qimage")
# Return a small black image as fallback
return QImage(10, 10, QImage.Format_RGB888)
try:
# Get image dimensions and verify its validity
h, w, ch = cv_img.shape
if h <= 0 or w <= 0 or ch != 3:
raise ValueError(f"Invalid image dimensions: {h}x{w}x{ch}")
# OpenCV uses BGR, Qt uses RGB format, so convert
rgb_image = cv2.cvtColor(cv_img, cv2.COLOR_BGR2RGB)
# Calculate bytes per line
bytes_per_line = ch * w
# Use numpy array data directly
# This avoids a copy, but ensures the data is properly aligned
# by creating a contiguous array
contiguous_data = np.ascontiguousarray(rgb_image)
# Create QImage from numpy array
q_image = QImage(contiguous_data.data, w, h, bytes_per_line, QImage.Format_RGB888)
# Create a copy to ensure the data stays valid when returning
return q_image.copy()
except Exception as e:
print(f"Error in enhanced_cv_to_qimage: {e}")
# Return a small black image as fallback
return QImage(10, 10, QImage.Format_RGB888)
def enhanced_cv_to_pixmap(cv_img: np.ndarray, target_width: int = None) -> QPixmap:
"""
Enhanced converter from OpenCV image to QPixmap with robust error handling.
Args:
cv_img: OpenCV image (numpy array)
target_width: Optional width to resize to (maintains aspect ratio)
Returns:
QPixmap object
"""
if cv_img is None or not isinstance(cv_img, np.ndarray):
print("Warning: Invalid image in enhanced_cv_to_pixmap")
# Create an empty pixmap with visual indication of error
empty_pixmap = QPixmap(640, 480)
empty_pixmap.fill(Qt.black)
return empty_pixmap
try:
# First convert to QImage
q_image = enhanced_cv_to_qimage(cv_img)
if q_image.isNull():
raise ValueError("Generated null QImage")
# Resize if needed
if target_width and q_image.width() > target_width:
q_image = q_image.scaledToWidth(target_width, Qt.SmoothTransformation)
# Convert to QPixmap
pixmap = QPixmap.fromImage(q_image)
if pixmap.isNull():
raise ValueError("Generated null QPixmap")
return pixmap
except Exception as e:
print(f"Error in enhanced_cv_to_pixmap: {e}")
# Create an empty pixmap with visual indication of error
empty_pixmap = QPixmap(640, 480)
empty_pixmap.fill(Qt.black)
return empty_pixmap