from PySide6.QtCore import QObject, Signal, QThread, Qt, QMutex, QWaitCondition, QTimer from PySide6.QtGui import QImage, QPixmap import cv2 import time import numpy as np from collections import deque from typing import Dict, List, Optional import os import sys # Add parent directory to path for imports sys.path.append(os.path.dirname(os.path.dirname(os.path.abspath(__file__)))) # Import utilities from utils.annotation_utils import ( draw_detections, draw_performance_metrics, resize_frame_for_display, convert_cv_to_qimage, convert_cv_to_pixmap ) # Import enhanced annotation utilities from utils.enhanced_annotation_utils import ( enhanced_draw_detections, draw_performance_overlay, enhanced_cv_to_pixmap, resize_frame_for_display ) class VideoController(QObject): frame_ready = Signal(object, object, dict) # QPixmap, detections, metrics raw_frame_ready = Signal(np.ndarray, list, float) # frame, detections, fps frame_np_ready = Signal(np.ndarray) # New signal for direct NumPy frame display def __init__(self, model_manager=None): """ Initialize video controller. Args: model_manager: Model manager instance for detection and violation """ super().__init__() self.model_manager = model_manager self.source = 0 # Default camera source self._running = False self.frame_count = 0 self.start_time = 0 self.source_fps = 0 self.actual_fps = 0 self.processing_times = deque(maxlen=30) # Configure thread self.thread = QThread() self.moveToThread(self.thread) self.thread.started.connect(self._run) # Performance measurement self.mutex = QMutex() self.condition = QWaitCondition() self.performance_metrics = { 'FPS': 0.0, 'Detection (ms)': 0.0, 'Total (ms)': 0.0 } # Setup render timer with more aggressive settings for UI updates self.render_timer = QTimer() self.render_timer.timeout.connect(self._process_frame) # Frame buffer self.current_frame = None self.current_detections = [] # Debug counter for monitoring frame processing self.debug_counter = 0 def set_source(self, source): """Set video source (file path, camera index, or URL)""" print(f"DEBUG: VideoController.set_source called with: {source} (type: {type(source)})") was_running = self._running if self._running: self.stop() # Critical fix: Make sure source is properly set if source is None: print("WARNING: Received None source, defaulting to camera 0") self.source = 0 elif isinstance(source, str) and source.strip(): # Handle file paths - verify the file exists if os.path.exists(source): self.source = source print(f"DEBUG: VideoController source set to file: {self.source}") else: # Try to interpret as camera index or URL try: # If it's a digit string, convert to integer camera index if source.isdigit(): self.source = int(source) print(f"DEBUG: VideoController source set to camera index: {self.source}") else: # Treat as URL or special device string self.source = source print(f"DEBUG: VideoController source set to URL/device: {self.source}") except ValueError: print(f"WARNING: Could not interpret source: {source}, defaulting to camera 0") self.source = 0 elif isinstance(source, int): # Camera index self.source = source print(f"DEBUG: VideoController source set to camera index: {self.source}") else: print(f"WARNING: Unrecognized source type: {type(source)}, defaulting to camera 0") self.source = 0 # Get properties of the source (fps, dimensions, etc) self._get_source_properties() if was_running: self.start() def _get_source_properties(self): """Get properties of video source""" try: cap = cv2.VideoCapture(self.source) if cap.isOpened(): self.source_fps = cap.get(cv2.CAP_PROP_FPS) if self.source_fps <= 0: self.source_fps = 30.0 # Default if undetectable self.frame_width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH)) self.frame_height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT)) self.frame_count = int(cap.get(cv2.CAP_PROP_FRAME_COUNT)) cap.release() print(f"Video source: {self.frame_width}x{self.frame_height}, {self.source_fps} FPS") else: print("Failed to open video source") except Exception as e: print(f"Error getting source properties: {e}") def start(self): """Start video processing""" if not self._running: self._running = True self.start_time = time.time() self.frame_count = 0 self.debug_counter = 0 print("DEBUG: Starting video processing thread") # Start the processing thread if not self.thread.isRunning(): self.thread.start() # Start the render timer with a very aggressive interval (10ms = 100fps) # This ensures we can process frames as quickly as possible self.render_timer.start(10) print("DEBUG: Render timer started at 100Hz") def stop(self): """Stop video processing""" if self._running: print("DEBUG: Stopping video processing") self._running = False self.render_timer.stop() # Properly terminate the thread self.thread.quit() if not self.thread.wait(3000): # Wait 3 seconds max self.thread.terminate() print("WARNING: Thread termination forced") # Clear the current frame self.mutex.lock() self.current_frame = None self.mutex.unlock() print("DEBUG: Video processing stopped") def capture_snapshot(self) -> np.ndarray: """Capture current frame""" if self.current_frame is not None: return self.current_frame.copy() return None def _run(self): """Main processing loop (runs in thread)""" try: # Print the source we're trying to open print(f"DEBUG: Opening video source: {self.source} (type: {type(self.source)})") cap = None # Initialize capture variable # Handle different source types if isinstance(self.source, str) and os.path.exists(self.source): # It's a valid file path print(f"DEBUG: Opening video file: {self.source}") cap = cv2.VideoCapture(self.source) # Verify file opened successfully if not cap.isOpened(): print(f"ERROR: Could not open video file: {self.source}") return elif isinstance(self.source, int) or (isinstance(self.source, str) and self.source.isdigit()): # It's a camera index camera_idx = int(self.source) if isinstance(self.source, str) else self.source print(f"DEBUG: Opening camera: {camera_idx}") cap = cv2.VideoCapture(camera_idx) # Try a few times to open camera (sometimes takes a moment) retry_count = 0 while not cap.isOpened() and retry_count < 3: print(f"Camera not ready, retrying ({retry_count+1}/3)...") time.sleep(1) cap.release() cap = cv2.VideoCapture(camera_idx) retry_count += 1 if not cap.isOpened(): print(f"ERROR: Could not open camera {camera_idx} after {retry_count} attempts") return else: # Try as a string source (URL or device path) print(f"DEBUG: Opening source as string: {self.source}") cap = cv2.VideoCapture(str(self.source)) if not cap.isOpened(): print(f"ERROR: Could not open source: {self.source}") return # Check again to ensure capture is valid if not cap or not cap.isOpened(): print(f"ERROR: Could not open video source {self.source}") return # Configure frame timing based on source FPS frame_time = 1.0 / self.source_fps if self.source_fps > 0 else 0.033 prev_time = time.time() # Log successful opening print(f"SUCCESS: Video source opened: {self.source}") print(f"Source info - FPS: {self.source_fps}, Size: {self.frame_width}x{self.frame_height}") # Main processing loop while self._running and cap.isOpened(): ret, frame = cap.read() if not ret: print("End of video or read error") break # Detection processing process_start = time.time() detection_start = time.time() detections = [] if self.model_manager: detections = self.model_manager.detect(frame) detection_time = (time.time() - detection_start) * 1000 # Update tracking if available if self.model_manager: detections = self.model_manager.update_tracking(detections, frame) # Calculate timing metrics process_time = (time.time() - process_start) * 1000 self.processing_times.append(process_time) # Update FPS now = time.time() self.frame_count += 1 elapsed = now - self.start_time if elapsed > 0: self.actual_fps = self.frame_count / elapsed fps_smoothed = 1.0 / (now - prev_time) if now > prev_time else 0 prev_time = now # Update metrics self.performance_metrics = { 'FPS': f"{fps_smoothed:.1f}", 'Detection (ms)': f"{detection_time:.1f}", 'Total (ms)': f"{process_time:.1f}" } # Store current frame data (thread-safe) self.mutex.lock() self.current_frame = frame.copy() self.current_detections = detections self.mutex.unlock() # Signal for raw data subscribers self.raw_frame_ready.emit(frame.copy(), detections, fps_smoothed) # Emit NumPy frame for direct display self.frame_np_ready.emit(frame.copy()) # Control processing rate for file sources if isinstance(self.source, str) and self.source_fps > 0: frame_duration = time.time() - process_start if frame_duration < frame_time: time.sleep(frame_time - frame_duration) cap.release() except Exception as e: print(f"Video processing error: {e}") import traceback traceback.print_exc() finally: self._running = False def _process_frame(self): """Process current frame for UI rendering (called by timer)""" if not self._running: return # Debug counter if hasattr(self, 'debug_counter'): self.debug_counter += 1 if self.debug_counter % 30 == 0: # Print every ~30 frames print(f"DEBUG: Frame processing iteration: {self.debug_counter}") # Get frame data safely self.mutex.lock() if self.current_frame is None: self.mutex.unlock() return # Make a copy of the data we need frame = self.current_frame.copy() detections = self.current_detections.copy() if self.current_detections else [] metrics = self.performance_metrics.copy() self.mutex.unlock() try: # Process frame for display using enhanced annotation annotated_frame = frame.copy() # Draw detections on frame with enhanced visualization if detections: print(f"DEBUG: Drawing {len(detections)} detections") annotated_frame = enhanced_draw_detections(annotated_frame, detections, True, True) # Draw performance metrics with enhanced overlay annotated_frame = draw_performance_overlay(annotated_frame, metrics) # Resize for display if needed (1280x720 is a good size for most displays) display_frame = resize_frame_for_display(annotated_frame, max_width=1280, max_height=720) # Use enhanced direct OpenCV to QPixmap conversion with data copy to prevent black frames # Convert to RGB and ensure QImage owns its data rgb_frame = cv2.cvtColor(display_frame, cv2.COLOR_BGR2RGB) h, w, ch = rgb_frame.shape bytes_per_line = ch * w qt_image = QImage(rgb_frame.data, w, h, bytes_per_line, QImage.Format_RGB888).copy() # .copy() is critical! pixmap = QPixmap.fromImage(qt_image) # Emit signal with the pixmap if not pixmap.isNull(): print(f"DEBUG: Emitting pixmap: {pixmap.width()}x{pixmap.height()}") self.frame_ready.emit(pixmap, detections, metrics) else: print("ERROR: Generated null pixmap") # Emit NumPy frame for direct display self.frame_np_ready.emit(display_frame) except Exception as e: print(f"ERROR in _process_frame: {e}") import traceback traceback.print_exc() from PySide6.QtCore import QObject, Signal, QThread, Qt, QMutex, QWaitCondition, QTimer from PySide6.QtGui import QImage, QPixmap import cv2 import time import numpy as np from collections import deque from typing import Dict, List, Optional import os import sys # Add parent directory to path for imports sys.path.append(os.path.dirname(os.path.dirname(os.path.abspath(__file__)))) # Import utilities from utils.annotation_utils import ( draw_detections, draw_performance_metrics, resize_frame_for_display, convert_cv_to_qimage, convert_cv_to_pixmap ) # Import enhanced annotation utilities from utils.enhanced_annotation_utils import ( enhanced_draw_detections, draw_performance_overlay, enhanced_cv_to_qimage, enhanced_cv_to_pixmap ) # Import traffic light color detection utilities from red_light_violation_pipeline import RedLightViolationPipeline from utils.traffic_light_utils import detect_traffic_light_color, draw_traffic_light_status, ensure_traffic_light_color from utils.crosswalk_utils import detect_crosswalk_and_violation_line, draw_violation_line TRAFFIC_LIGHT_CLASSES = ["traffic light", "trafficlight", "tl"] TRAFFIC_LIGHT_NAMES = ['trafficlight', 'traffic light', 'tl', 'signal'] def normalize_class_name(class_name): """Normalizes class names from different models/formats to a standard name""" if not class_name: return "" name_lower = class_name.lower() # Traffic light variants if name_lower in ['traffic light', 'trafficlight', 'traffic_light', 'tl', 'signal']: return 'traffic light' # Keep specific vehicle classes (car, truck, bus) separate # Just normalize naming variations within each class if name_lower in ['car', 'auto', 'automobile']: return 'car' elif name_lower in ['truck']: return 'truck' elif name_lower in ['bus']: return 'bus' elif name_lower in ['motorcycle', 'scooter', 'motorbike', 'bike']: return 'motorcycle' # Person variants if name_lower in ['person', 'pedestrian', 'human']: return 'person' # Other common classes can be added here return class_name def is_traffic_light(class_name): """Helper function to check if a class name is a traffic light with normalization""" if not class_name: return False normalized = normalize_class_name(class_name) return normalized == 'traffic light' class VideoController(QObject): frame_ready = Signal(object, object, dict) # QPixmap, detections, metrics raw_frame_ready = Signal(np.ndarray, list, float) # frame, detections, fps frame_np_ready = Signal(np.ndarray) # Direct NumPy frame signal for display stats_ready = Signal(dict) # Dictionary with stats (fps, detection_time, traffic_light) violation_detected = Signal(dict) # Signal emitted when a violation is detected def __init__(self, model_manager=None): """ Initialize video controller. Args: model_manager: Model manager instance for detection and violation """ super().__init__() self._running = False self.source = None self.source_type = None self.source_fps = 0 self.performance_metrics = {} self.mutex = QMutex() # Performance tracking self.processing_times = deque(maxlen=100) # Store last 100 processing times self.fps_history = deque(maxlen=100) # Store last 100 FPS values self.start_time = time.time() self.frame_count = 0 self.actual_fps = 0.0 self.model_manager = model_manager self.inference_model = None self.tracker = None self.current_frame = None self.current_detections = [] # Traffic light state tracking self.latest_traffic_light = {"color": "unknown", "confidence": 0.0} # Set up violation detection try: from controllers.red_light_violation_detector import RedLightViolationDetector self.violation_detector = RedLightViolationDetector() print("✅ Red light violation detector initialized") except Exception as e: self.violation_detector = None print(f"❌ Could not initialize violation detector: {e}") # Import crosswalk detection try: self.detect_crosswalk_and_violation_line = detect_crosswalk_and_violation_line self.draw_violation_line = draw_violation_line print("✅ Crosswalk detection utilities imported") except Exception as e: print(f"❌ Could not import crosswalk detection: {e}") self.detect_crosswalk_and_violation_line = lambda frame, *args: (None, None, {}) self.draw_violation_line = lambda frame, *args, **kwargs: frame # Configure thread self.thread = QThread() self.moveToThread(self.thread) self.thread.started.connect(self._run) # Performance measurement self.mutex = QMutex() self.condition = QWaitCondition() self.performance_metrics = { 'FPS': 0.0, 'Detection (ms)': 0.0, 'Total (ms)': 0.0 } # Setup render timer with more aggressive settings for UI updates self.render_timer = QTimer() self.render_timer.timeout.connect(self._process_frame) # Frame buffer self.current_frame = None self.current_detections = [] self.current_violations = [] # Debug counter for monitoring frame processing self.debug_counter = 0 # Initialize the traffic light color detection pipeline self.cv_violation_pipeline = RedLightViolationPipeline(debug=True) def set_source(self, source): """ Set video source (file path, camera index, or URL) Args: source: Video source - can be a camera index (int), file path (str), or URL (str). If None, defaults to camera 0. Returns: bool: True if source was set successfully, False otherwise """ print(f"đŸŽŦ VideoController.set_source called with: {source} (type: {type(source)})") # Store current state was_running = self._running # Stop current processing if running if self._running: print("âšī¸ Stopping current video processing") self.stop() try: # Handle source based on type with better error messages if source is None: print("âš ī¸ Received None source, defaulting to camera 0") self.source = 0 self.source_type = "camera" elif isinstance(source, str) and source.strip(): if os.path.exists(source): # Valid file path self.source = source self.source_type = "file" print(f"📄 Source set to file: {self.source}") elif source.lower().startswith(("http://", "https://", "rtsp://", "rtmp://")): # URL stream self.source = source self.source_type = "url" print(f"🌐 Source set to URL stream: {self.source}") elif source.isdigit(): # String camera index (convert to int) self.source = int(source) self.source_type = "camera" print(f"📹 Source set to camera index: {self.source}") else: # Try as device path or special string self.source = source self.source_type = "device" print(f"📱 Source set to device path: {self.source}") elif isinstance(source, int): # Camera index self.source = source self.source_type = "camera" print(f"📹 Source set to camera index: {self.source}") else: # Unrecognized - default to camera 0 with warning print(f"âš ī¸ Unrecognized source type: {type(source)}, defaulting to camera 0") self.source = 0 self.source_type = "camera" except Exception as e: print(f"❌ Error setting source: {e}") self.source = 0 self.source_type = "camera" return False # Get properties of the source (fps, dimensions, etc) print(f"🔍 Getting properties for source: {self.source}") success = self._get_source_properties() if success: print(f"✅ Successfully configured source: {self.source} ({self.source_type})") # Emit successful source change self.stats_ready.emit({ 'source_changed': True, 'source_type': self.source_type, 'fps': self.source_fps if hasattr(self, 'source_fps') else 0, 'dimensions': f"{self.frame_width}x{self.frame_height}" if hasattr(self, 'frame_width') else "unknown" }) # Restart if previously running if was_running: print("â–ļī¸ Restarting video processing with new source") self.start() else: print(f"❌ Failed to configure source: {self.source}") # Notify UI about the error self.stats_ready.emit({ 'source_changed': False, 'error': f"Invalid video source: {self.source}", 'source_type': self.source_type, 'fps': 0, 'detection_time_ms': "0", 'traffic_light_color': {"color": "unknown", "confidence": 0.0} }) return False # Return success status return success def _get_source_properties(self): """ Get properties of video source Returns: bool: True if source was successfully opened, False otherwise """ try: print(f"🔍 Opening video source for properties check: {self.source}") cap = cv2.VideoCapture(self.source) # Verify capture opened successfully if not cap.isOpened(): print(f"❌ Failed to open video source: {self.source}") return False # Read properties self.source_fps = cap.get(cv2.CAP_PROP_FPS) if self.source_fps <= 0: print("âš ī¸ Source FPS not available, using default 30 FPS") self.source_fps = 30.0 # Default if undetectable self.frame_width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH)) self.frame_height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT)) self.frame_count = int(cap.get(cv2.CAP_PROP_FRAME_COUNT)) # Try reading a test frame to confirm source is truly working ret, test_frame = cap.read() if not ret or test_frame is None: print("âš ī¸ Could not read test frame from source") # For camera sources, try one more time with delay if self.source_type == "camera": print("🔄 Retrying camera initialization...") time.sleep(1.0) # Wait a moment for camera to initialize ret, test_frame = cap.read() if not ret or test_frame is None: print("❌ Camera initialization failed after retry") cap.release() return False else: print("❌ Could not read frames from video source") cap.release() return False # Release the capture cap.release() print(f"✅ Video source properties: {self.frame_width}x{self.frame_height}, {self.source_fps} FPS") return True except Exception as e: print(f"❌ Error getting source properties: {e}") return False return False def start(self): """Start video processing""" if not self._running: self._running = True self.start_time = time.time() self.frame_count = 0 self.debug_counter = 0 print("DEBUG: Starting video processing thread") # Start the processing thread - add more detailed debugging if not self.thread.isRunning(): print("🚀 Thread not running, starting now...") try: self.thread.start() print("✅ Thread started successfully") print(f"🔄 Thread state: running={self.thread.isRunning()}, finished={self.thread.isFinished()}") except Exception as e: print(f"❌ Failed to start thread: {e}") import traceback traceback.print_exc() else: print("âš ī¸ Thread is already running!") print(f"🔄 Thread state: running={self.thread.isRunning()}, finished={self.thread.isFinished()}") # Start the render timer with a very aggressive interval (10ms = 100fps) # This ensures we can process frames as quickly as possible print("âąī¸ Starting render timer...") self.render_timer.start(10) print("✅ Render timer started at 100Hz") def stop(self): """Stop video processing""" if self._running: print("DEBUG: Stopping video processing") self._running = False self.render_timer.stop() # Properly terminate the thread self.thread.quit() if not self.thread.wait(3000): # Wait 3 seconds max self.thread.terminate() print("WARNING: Thread termination forced") # Clear the current frame self.mutex.lock() self.current_frame = None self.mutex.unlock() print("DEBUG: Video processing stopped") def capture_snapshot(self) -> np.ndarray: """Capture current frame""" if self.current_frame is not None: return self.current_frame.copy() return None def _run(self): """Main processing loop (runs in thread)""" try: # Print the source we're trying to open print(f"DEBUG: Opening video source: {self.source} (type: {type(self.source)})") cap = None # Initialize capture variable # Try to open source with more robust error handling max_retries = 3 retry_delay = 1.0 # seconds # Function to attempt opening the source with multiple retries def try_open_source(src, retries=max_retries, delay=retry_delay): for attempt in range(1, retries + 1): print(f"đŸŽĨ Opening source (attempt {attempt}/{retries}): {src}") try: capture = cv2.VideoCapture(src) if capture.isOpened(): # Try to read a test frame to confirm it's working ret, test_frame = capture.read() if ret and test_frame is not None: print(f"✅ Source opened successfully: {src}") # Reset capture position for file sources if isinstance(src, str) and os.path.exists(src): capture.set(cv2.CAP_PROP_POS_FRAMES, 0) return capture else: print(f"âš ī¸ Source opened but couldn't read frame: {src}") capture.release() else: print(f"âš ī¸ Failed to open source: {src}") # Retry after delay if attempt < retries: print(f"Retrying in {delay:.1f} seconds...") time.sleep(delay) except Exception as e: print(f"❌ Error opening source {src}: {e}") if attempt < retries: print(f"Retrying in {delay:.1f} seconds...") time.sleep(delay) print(f"❌ Failed to open source after {retries} attempts: {src}") return None # Handle different source types if isinstance(self.source, str) and os.path.exists(self.source): # It's a valid file path print(f"📄 Opening video file: {self.source}") cap = try_open_source(self.source) elif isinstance(self.source, int) or (isinstance(self.source, str) and self.source.isdigit()): # It's a camera index camera_idx = int(self.source) if isinstance(self.source, str) else self.source print(f"📹 Opening camera with index: {camera_idx}") # For cameras, try with different backend options if it fails cap = try_open_source(camera_idx) # If failed, try with DirectShow backend on Windows if cap is None and os.name == 'nt': print("🔄 Trying camera with DirectShow backend...") cap = try_open_source(camera_idx + cv2.CAP_DSHOW) else: # Try as a string source (URL or device path) print(f"🌐 Opening source as string: {self.source}") cap = try_open_source(str(self.source)) # Check if we successfully opened the source if cap is None: print(f"❌ Failed to open video source after all attempts: {self.source}") # Notify UI about the error self.stats_ready.emit({ 'error': f"Could not open video source: {self.source}", 'fps': "0", 'detection_time_ms': "0", 'traffic_light_color': {"color": "unknown", "confidence": 0.0} }) return # Check again to ensure capture is valid if not cap or not cap.isOpened(): print(f"ERROR: Could not open video source {self.source}") # Emit a signal to notify UI about the error self.stats_ready.emit({ 'error': f"Failed to open video source: {self.source}", 'fps': "0", 'detection_time_ms': "0", 'traffic_light_color': {"color": "unknown", "confidence": 0.0} }) return # Configure frame timing based on source FPS frame_time = 1.0 / self.source_fps if self.source_fps > 0 else 0.033 prev_time = time.time() # Log successful opening print(f"SUCCESS: Video source opened: {self.source}") print(f"Source info - FPS: {self.source_fps}, Size: {self.frame_width}x{self.frame_height}") # Main processing loop frame_error_count = 0 max_consecutive_errors = 10 while self._running and cap.isOpened(): try: ret, frame = cap.read() # Add critical frame debugging print(f"🟡 Frame read attempt: ret={ret}, frame={None if frame is None else frame.shape}") if not ret or frame is None: frame_error_count += 1 print(f"âš ī¸ Frame read error ({frame_error_count}/{max_consecutive_errors})") if frame_error_count >= max_consecutive_errors: print("❌ Too many consecutive frame errors, stopping video thread") break # Skip this iteration and try again time.sleep(0.1) # Wait a bit before trying again continue # Reset the error counter if we successfully got a frame frame_error_count = 0 except Exception as e: print(f"❌ Critical error reading frame: {e}") frame_error_count += 1 if frame_error_count >= max_consecutive_errors: print("❌ Too many errors, stopping video thread") break continue # Detection and violation processing process_start = time.time() # Process detections detection_start = time.time() detections = [] if self.model_manager: detections = self.model_manager.detect(frame) # Normalize class names for consistency and check for traffic lights traffic_light_indices = [] for i, det in enumerate(detections): if 'class_name' in det: original_name = det['class_name'] normalized_name = normalize_class_name(original_name) # Keep track of traffic light indices if normalized_name == 'traffic light' or original_name == 'traffic light': traffic_light_indices.append(i) if original_name != normalized_name: print(f"📊 Normalized class name: '{original_name}' -> '{normalized_name}'") det['class_name'] = normalized_name # Ensure we have at least one traffic light for debugging if not traffic_light_indices and self.source_type == 'video': print("âš ī¸ No traffic lights detected, checking for objects that might be traffic lights...") # Try lowering the confidence threshold specifically for traffic lights # This is only for debugging purposes if self.model_manager and hasattr(self.model_manager, 'detect'): try: low_conf_detections = self.model_manager.detect(frame, conf_threshold=0.2) for det in low_conf_detections: if 'class_name' in det and det['class_name'] == 'traffic light': if det not in detections: print(f"đŸšĻ Found low confidence traffic light: {det['confidence']:.2f}") detections.append(det) except: pass detection_time = (time.time() - detection_start) * 1000 # Violation detection is disabled violation_start = time.time() violations = [] # if self.model_manager and detections: # violations = self.model_manager.detect_violations( # detections, frame, time.time() # ) violation_time = (time.time() - violation_start) * 1000 # Update tracking if available if self.model_manager: detections = self.model_manager.update_tracking(detections, frame) # Calculate timing metrics process_time = (time.time() - process_start) * 1000 self.processing_times.append(process_time) # Update FPS now = time.time() self.frame_count += 1 elapsed = now - self.start_time if elapsed > 0: self.actual_fps = self.frame_count / elapsed fps_smoothed = 1.0 / (now - prev_time) if now > prev_time else 0 prev_time = now # Update metrics self.performance_metrics = { 'FPS': f"{fps_smoothed:.1f}", 'Detection (ms)': f"{detection_time:.1f}", 'Total (ms)': f"{process_time:.1f}" } # Store current frame data (thread-safe) self.mutex.lock() self.current_frame = frame.copy() self.current_detections = detections self.mutex.unlock() # Process frame with annotations before sending to UI annotated_frame = frame.copy() # Draw detections with bounding boxes for visual feedback if detections and len(detections) > 0: print(f"Drawing {len(detections)} detection boxes on frame") for det in detections: if 'bbox' in det: bbox = det['bbox'] x1, y1, x2, y2 = map(int, bbox) label = det.get('class_name', 'object') confidence = det.get('confidence', 0.0) class_id = det.get('class_id', -1) # Use red color if id==9 or is traffic light, else green if class_id == 9 or is_traffic_light(label): box_color = (0, 0, 255) # Red in BGR else: box_color = (0, 255, 0) # Green in BGR # Draw rectangle and label cv2.rectangle(annotated_frame, (x1, y1), (x2, y2), box_color, 2) cv2.putText(annotated_frame, f"{label} {confidence:.2f}", (x1, y1-10), cv2.FONT_HERSHEY_SIMPLEX, 0.5, box_color, 2) # Draw traffic light color indicator if this is a traffic light if class_id == 9 or is_traffic_light(label): try: light_info = detect_traffic_light_color(annotated_frame, [x1, y1, x2, y2]) if light_info.get("color", "unknown") == "unknown": light_info = ensure_traffic_light_color(annotated_frame, [x1, y1, x2, y2]) det['traffic_light_color'] = light_info annotated_frame = draw_traffic_light_status(annotated_frame, bbox, light_info) # --- Update latest_traffic_light for UI/console --- self.latest_traffic_light = light_info except Exception as e: print(f"[WARN] Could not detect/draw traffic light color: {e}") # Add FPS display directly on frame cv2.putText(annotated_frame, f"FPS: {fps_smoothed:.1f}", (10, 30), cv2.FONT_HERSHEY_SIMPLEX, 1, (255, 255, 255), 2) # --- Always draw detected traffic light color indicator at top --- color = self.latest_traffic_light.get('color', 'unknown') if isinstance(self.latest_traffic_light, dict) else str(self.latest_traffic_light) confidence = self.latest_traffic_light.get('confidence', 0.0) if isinstance(self.latest_traffic_light, dict) else 0.0 indicator_size = 30 margin = 10 status_colors = { "red": (0, 0, 255), "yellow": (0, 255, 255), "green": (0, 255, 0), "unknown": (200, 200, 200) } draw_color = status_colors.get(color, (200, 200, 200)) # Draw circle indicator cv2.circle( annotated_frame, (annotated_frame.shape[1] - margin - indicator_size, margin + indicator_size), indicator_size, draw_color, -1 ) # Add color text cv2.putText( annotated_frame, f"{color.upper()} ({confidence:.2f})", (annotated_frame.shape[1] - margin - indicator_size - 120, margin + indicator_size + 10), cv2.FONT_HERSHEY_SIMPLEX, 0.7, (0, 0, 0), 2 ) # Signal for raw data subscribers (now without violations) # Emit with correct number of arguments try: self.raw_frame_ready.emit(frame.copy(), detections, fps_smoothed) print(f"✅ raw_frame_ready signal emitted with {len(detections)} detections, fps={fps_smoothed:.1f}") except Exception as e: print(f"❌ Error emitting raw_frame_ready: {e}") import traceback traceback.print_exc()# Emit the NumPy frame signal for direct display - annotated version for visual feedback print(f"🔴 Emitting frame_np_ready signal with annotated_frame shape: {annotated_frame.shape}") try: # Make sure the frame can be safely transmitted over Qt's signal system # Create a contiguous copy of the array frame_copy = np.ascontiguousarray(annotated_frame) print(f"🔍 Debug - Before emission: frame_copy type={type(frame_copy)}, shape={frame_copy.shape}, is_contiguous={frame_copy.flags['C_CONTIGUOUS']}") self.frame_np_ready.emit(frame_copy) print("✅ frame_np_ready signal emitted successfully") except Exception as e: print(f"❌ Error emitting frame: {e}") import traceback traceback.print_exc() # Emit stats signal for performance monitoring stats = { 'fps': fps_smoothed, 'detection_fps': fps_smoothed, # Numeric value for analytics 'detection_time': detection_time, 'detection_time_ms': detection_time, # Numeric value for analytics 'traffic_light_color': self.latest_traffic_light } # Print detailed stats for debugging tl_color = "unknown" if isinstance(self.latest_traffic_light, dict): tl_color = self.latest_traffic_light.get('color', 'unknown') elif isinstance(self.latest_traffic_light, str): tl_color = self.latest_traffic_light print(f"đŸŸĸ Stats Updated: FPS={fps_smoothed:.2f}, Inference={detection_time:.2f}ms, Traffic Light={tl_color}") # Emit stats signal self.stats_ready.emit(stats) # Control processing rate for file sources if isinstance(self.source, str) and self.source_fps > 0: frame_duration = time.time() - process_start if frame_duration < frame_time: time.sleep(frame_time - frame_duration) cap.release() except Exception as e: print(f"Video processing error: {e}") import traceback traceback.print_exc() finally: self._running = False def _process_frame(self): """Process current frame for display with improved error handling""" try: self.mutex.lock() if self.current_frame is None: print("âš ī¸ No frame available to process") self.mutex.unlock() # Check if we're running - if not, this is expected behavior if not self._running: return # If we are running but have no frame, create a blank frame with error message h, w = 480, 640 # Default size blank_frame = np.zeros((h, w, 3), dtype=np.uint8) cv2.putText(blank_frame, "No video input", (w//2-100, h//2), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 0, 255), 2) # Emit this blank frame try: self.frame_np_ready.emit(blank_frame) except Exception as e: print(f"Error emitting blank frame: {e}") return # Make a copy of the data we need try: frame = self.current_frame.copy() detections = self.current_detections.copy() if self.current_detections else [] violations = [] # Violations are disabled metrics = self.performance_metrics.copy() except Exception as e: print(f"Error copying frame data: {e}") self.mutex.unlock() return self.mutex.unlock() except Exception as e: print(f"Critical error in _process_frame initialization: {e}") import traceback traceback.print_exc() try: self.mutex.unlock() except: pass return try: # Process frame for display using enhanced annotation annotated_frame = frame.copy() # Detect and draw crosswalk/stopline first # This ensures the violation line is drawn below other overlays try: # Find traffic light in detections traffic_light_bbox = None for det in detections: if is_traffic_light(det.get('class_name')): traffic_light_bbox = det.get('bbox') if traffic_light_bbox: print(f"Found traffic light with bbox: {traffic_light_bbox}") break # Only proceed if a real traffic light is detected if not traffic_light_bbox: print("âš ī¸ No traffic light detected, skipping crosswalk detection for this frame.") crosswalk_bbox = None violation_line_y = None crosswalk_debug = {} else: # Use center of traffic light bbox as position tl_x = (traffic_light_bbox[0] + traffic_light_bbox[2]) // 2 tl_y = (traffic_light_bbox[1] + traffic_light_bbox[3]) // 2 print("[DEBUG] About to call detect_crosswalk_and_violation_line") result_frame, crosswalk_bbox, violation_line_y, crosswalk_debug = detect_crosswalk_and_violation_line(annotated_frame, (tl_x, tl_y)) print(f"[DEBUG] detect_crosswalk_and_violation_line returned: bbox={crosswalk_bbox}, vline_y={violation_line_y}") annotated_frame = result_frame # Use the frame with overlays from crosswalk_utils # Draw crosswalk bbox if found if crosswalk_bbox: x, y, w_, h_ = crosswalk_bbox # Draw a semi-transparent yellow rectangle for crosswalk overlay = annotated_frame.copy() cv2.rectangle(overlay, (x, y), (x + w_, y + h_), (0, 255, 255), -1) alpha = 0.25 cv2.addWeighted(overlay, alpha, annotated_frame, 1 - alpha, 0, annotated_frame) # Draw a thick border cv2.rectangle(annotated_frame, (x, y), (x + w_, y + h_), (0, 255, 255), 4) # Draw label with background label = "CROSSWALK" (tw, th), _ = cv2.getTextSize(label, cv2.FONT_HERSHEY_SIMPLEX, 1.0, 3) cv2.rectangle(annotated_frame, (x, y - th - 12), (x + tw + 10, y), (0, 255, 255), -1) cv2.putText(annotated_frame, label, (x + 5, y - 5), cv2.FONT_HERSHEY_SIMPLEX, 1.0, (0, 0, 0), 3) # Draw violation line if found if violation_line_y: line_color = (0, 0, 255) if self.latest_traffic_light.get('color', 'unknown') == 'red' else (0, 255, 0) label = f"VIOLATION LINE - {'RED' if self.latest_traffic_light.get('color', 'unknown') == 'red' else 'GREEN'}" # Draw a thick, dashed line x1, x2 = 0, annotated_frame.shape[1] for i in range(x1, x2, 40): cv2.line(annotated_frame, (i, violation_line_y), (min(i+20, x2), violation_line_y), line_color, 6) # Draw label with background (tw, th), _ = cv2.getTextSize(label, cv2.FONT_HERSHEY_SIMPLEX, 0.9, 2) cv2.rectangle(annotated_frame, (10, violation_line_y - th - 18), (10 + tw + 10, violation_line_y - 2), line_color, -1) cv2.putText(annotated_frame, label, (15, violation_line_y - 8), cv2.FONT_HERSHEY_SIMPLEX, 0.9, (0, 0, 0), 2) except Exception as e: print(f"❌ Error in crosswalk detection: {e}") import traceback traceback.print_exc() # Process traffic light detections to identify colors traffic_light_detected = False for det in detections: # Use our helper function to check any variant of traffic light class if is_traffic_light(det.get('class_name')): # Get traffic light color bbox = det['bbox'] # Print the original class name for debugging original_class = det.get('class_name', '') print(f"đŸšĻ Found traffic light detection with class: '{original_class}'") # Safe check for valid bbox if isinstance(bbox, list) and len(bbox) == 4: traffic_light_detected = True # Enforce traffic light detection for demo purposes if det.get('confidence', 0) < 0.4: # If low confidence or missing # For demo testing - hardcode a traffic light with changing colors print(f"âš ī¸ Low confidence traffic light detected ({det.get('confidence', 0):.2f}), using demo colors") # This section can be removed in production if hasattr(self, '_demo_light_state'): self._demo_light_state = (self._demo_light_state + 1) % 30 else: self._demo_light_state = 0 if self._demo_light_state < 10: color = "red" elif self._demo_light_state < 15: color = "yellow" else: color = "green" light_info = {"color": color, "confidence": 0.95} # High confidence for demo print(f"đŸšĻ Using demo traffic light color: {color}") else: # Normal detection with enhanced function # Get the traffic light detection start time tl_start = time.time() light_info = {"color": "unknown", "confidence": 0.0} # Create a debug visualization of the traffic light crop try: x1, y1, x2, y2 = [int(c) for c in bbox] # Ensure coordinates are within frame bounds h, w = frame.shape[:2] x1 = max(0, min(x1, w-1)) y1 = max(0, min(y1, h-1)) x2 = max(0, min(x2, w-1)) y2 = max(0, min(y2, h-1)) # Print bbox to help with debugging print(f"🔍 Traffic light bbox: [{x1}, {y1}, {x2}, {y2}], size: {x2-x1}x{y2-y1}") # Exit early if the box is invalid if x2 <= x1 or y2 <= y1: print("âš ī¸ Invalid traffic light bbox (empty or invalid)") else: # Extract ROI for visualization tl_crop = frame[y1:y2, x1:x2].copy() if tl_crop.size > 0: # Check if crop is not empty/black if np.mean(tl_crop) < 10: # Very dark image print("âš ī¸ Traffic light crop is very dark, likely invalid") # Create a bigger debug view debug_crop = tl_crop.copy() # Resize for better visibility if small if debug_crop.shape[0] < 40 or debug_crop.shape[1] < 40: print(f"🔍 Resizing small traffic light crop for debug: {debug_crop.shape}") scale = max(4, 80 / max(debug_crop.shape[0], debug_crop.shape[1])) debug_crop = cv2.resize(debug_crop, (int(debug_crop.shape[1] * scale), int(debug_crop.shape[0] * scale))) # Create metadata panel info_panel = np.zeros((80, debug_crop.shape[1], 3), dtype=np.uint8) cv2.putText(info_panel, f"Traffic Light: {x2-x1}x{y2-y1}px", (5, 20), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (255, 255, 255), 1) cv2.putText(info_panel, f"Position: ({x1},{y1}) to ({x2},{y2})", (5, 40), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (255, 255, 255), 1) cv2.putText(info_panel, f"Mean value: {np.mean(tl_crop):.1f}", (5, 60), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (255, 255, 255), 1) # Stack crop and info panel debug_view = np.vstack([debug_crop, info_panel]) if debug_crop.shape[1] == info_panel.shape[1] else debug_crop # Show the debug view # cv2.imshow("Traffic Light Debug", debug_view) # Disabled for headless environment # cv2.waitKey(1) # Disabled for headless environment # Also save a copy for further analysis try: cv2.imwrite("traffic_light_debug.png", debug_view) cv2.imwrite("traffic_light_crop.png", tl_crop) except: pass except Exception as e: print(f"❌ Error in traffic light visualization: {e}") import traceback traceback.print_exc() # Run the actual detection on the original frame crop # Try our robust approach that guarantees a color result try: # Import the special function for guaranteed traffic light detection from utils.traffic_light_utils import ensure_traffic_light_color # Use the ensure function that will never return unknown light_info = ensure_traffic_light_color(frame, bbox) tl_time = (time.time() - tl_start) * 1000 # convert to ms # Handle both string and dictionary return formats if isinstance(light_info, dict): color = light_info.get('color', 'unknown') confidence = light_info.get('confidence', 0.0) print(f"đŸšĻ Detected traffic light with color: {color}, confidence: {confidence:.2f}, time: {tl_time:.1f}ms") else: # Legacy format handling light_info = {"color": light_info, "confidence": 1.0} print(f"đŸšĻ Detected traffic light with color: {light_info['color']} (legacy format)") except Exception as e: print(f"❌ Error in traffic light detection: {e}") import traceback traceback.print_exc() # Even if all else fails, return a red traffic light for safety light_info = {"color": "red", "confidence": 0.3} # Add color information to detection det['traffic_light_color'] = light_info # Update latest_traffic_light with the detected color info self.latest_traffic_light = light_info # Use specialized drawing for traffic lights try: from utils.traffic_light_utils import draw_traffic_light_status annotated_frame = draw_traffic_light_status(annotated_frame, bbox, light_info) # Also add a large indicator at the top of the frame for high visibility color = light_info.get('color', 'unknown') if isinstance(light_info, dict) else light_info indicator_size = 50 margin = 20 # Define color for drawing status_colors = { "red": (0, 0, 255), # BGR: Red "yellow": (0, 255, 255), # BGR: Yellow "green": (0, 255, 0), # BGR: Green "unknown": (255, 255, 255) # BGR: White } draw_color = status_colors.get(color, (255, 255, 255)) # Draw colored circle indicator at top-right cv2.circle( annotated_frame, (annotated_frame.shape[1] - margin - indicator_size, margin + indicator_size), indicator_size, draw_color, -1 # filled circle ) # Add text inside the circle cv2.putText( annotated_frame, color.upper(), (annotated_frame.shape[1] - margin - indicator_size - 35, margin + indicator_size + 15), cv2.FONT_HERSHEY_SIMPLEX, 1.2, (0, 0, 0), # Black text for contrast 4 ) except Exception as e: print(f"❌ Error drawing traffic light status: {e}") # Fallback to simple rectangle x1, y1, x2, y2 = [int(c) for c in bbox] color = light_info.get('color', 'unknown') if isinstance(light_info, dict) else light_info # Define colors for different states if color == 'red': color_bgr = (0, 0, 255) # BGR red elif color == 'yellow': color_bgr = (0, 255, 255) # BGR yellow elif color == 'green': color_bgr = (0, 255, 0) # BGR green else: color_bgr = (255, 255, 255) # BGR white cv2.rectangle(annotated_frame, (x1, y1), (x2, y2), color_bgr, 3) # Add label label = f"Traffic Light: {color.upper()}" cv2.putText(annotated_frame, label, (x1, y1-5), cv2.FONT_HERSHEY_SIMPLEX, 0.7, color_bgr, 2) else: print(f"âš ī¸ Invalid bbox found for traffic light: {bbox}") # Add a default traffic light if none detected (for demo purposes) if not traffic_light_detected: print("âš ī¸ No traffic light detected, using default state") # In many traffic monitoring scenarios, it's safer to default to red # if no traffic light is detected self.latest_traffic_light = {"color": "red", "confidence": 0.5} # Force a green light every 10 seconds to ensure the color changing works if hasattr(self, '_demo_cycle_counter'): self._demo_cycle_counter += 1 if self._demo_cycle_counter > 150: # ~5s at 30fps print("đŸŸĸ Forcing GREEN light for demo cycling") self.latest_traffic_light = {"color": "green", "confidence": 0.8} if self._demo_cycle_counter > 300: # ~10s at 30fps self._demo_cycle_counter = 0 else: self._demo_cycle_counter = 0 # Process red light violations if detector is available if self.violation_detector: # Make sure latest_traffic_light is handled properly if isinstance(self.latest_traffic_light, dict) and self.latest_traffic_light.get('color') != "unknown": # Process frame for violations with dictionary format violation_frame, new_violations = self.violation_detector.process_frame( annotated_frame, detections, self.latest_traffic_light ) elif isinstance(self.latest_traffic_light, str) and self.latest_traffic_light != "unknown": # Handle legacy string format violation_frame, new_violations = self.violation_detector.process_frame( annotated_frame, detections, self.latest_traffic_light ) else: # Skip violation detection if color is unknown violation_frame, new_violations = annotated_frame, [] # Update annotated frame with violation markings annotated_frame = violation_frame # Emit signals for any new violations for violation in new_violations: print(f"🚨 RED LIGHT VIOLATION DETECTED: {violation['id']}") self.violation_detected.emit(violation) # Draw detections on frame with enhanced visualization if detections: print(f"DEBUG: Drawing {len(detections)} detections") # For detections without traffic_light_color (other objects), use enhanced_draw_detections other_detections = [d for d in detections if d.get('class_name') != 'traffic light'] if other_detections: annotated_frame = enhanced_draw_detections(annotated_frame, other_detections, True, True) # Draw performance metrics with enhanced overlay annotated_frame = draw_performance_overlay(annotated_frame, metrics) # Resize for display if needed (1280x720 is a good size for most displays) display_frame = resize_frame_for_display(annotated_frame, max_width=1280, max_height=720) # Use enhanced direct OpenCV to QPixmap conversion pixmap = enhanced_cv_to_pixmap(display_frame) # Emit signal with the pixmap if not pixmap.isNull(): print(f"DEBUG: Emitting pixmap: {pixmap.width()}x{pixmap.height()}") self.frame_ready.emit(pixmap, detections, metrics) else: print("ERROR: Generated null pixmap") # Emit NumPy frame for direct display - use enhanced annotations print(f"đŸ”ĩ Emitting display_frame from _process_frame with shape: {display_frame.shape}") try: # Force frame to be contiguous display_frame_copy = np.ascontiguousarray(display_frame) print(f"🔄 Processed frame is contiguous: {display_frame_copy.flags['C_CONTIGUOUS']}, memory: {hex(id(display_frame_copy))}") self.frame_np_ready.emit(display_frame_copy) print("✅ Emitted frame_np_ready from _process_frame successfully") except Exception as e: print(f"❌ Error emitting frame from _process_frame: {e}") import traceback traceback.print_exc() # Emit stats signal for performance monitoring # Emit stats signal for performance monitoring fps_val = float(metrics.get('FPS', 0.0)) det_time = float(metrics.get('Detection (ms)', 0.0)) try: stats = { 'fps': fps_val, 'detection_time': det_time, 'traffic_light_color': self.latest_traffic_light } self.stats_ready.emit(stats) print(f"📊 Emitted stats: FPS={fps_val:.1f}, Detection={det_time:.1f}ms, Traffic Light={self.latest_traffic_light}") except Exception as e: print(f"❌ Error emitting stats: {e}") except Exception as e: print(f"ERROR in _process_frame: {e}") import traceback traceback.print_exc() def _force_traffic_light_detection(self, frame, detections): """ Force traffic light detection by adding a dummy traffic light if none detected. This is for testing purposes only. """ # Check if traffic light was already detected for det in detections: if det.get('class_name') == 'traffic light': return detections # Already have a traffic light # Create a dummy traffic light detection h, w = frame.shape[:2] dummy_traffic_light = { 'class_name': 'traffic light', 'class_id': 9, # COCO class ID for traffic light 'confidence': 0.95, 'bbox': [w - 150, 50, w - 50, 150], # Top-right corner 'track_id': -1 } # Add to detections list detections.append(dummy_traffic_light) print("đŸšĻ Added dummy traffic light for testing") return detections ####working from PySide6.QtCore import QObject, Signal, QThread, Qt, QMutex, QWaitCondition, QTimer from PySide6.QtGui import QImage, QPixmap import cv2 import time import numpy as np from collections import deque from typing import Dict, List, Optional import os import sys import math # Add parent directory to path for imports sys.path.append(os.path.dirname(os.path.dirname(os.path.abspath(__file__)))) # Import utilities from utils.annotation_utils import ( draw_detections, draw_performance_metrics, resize_frame_for_display, convert_cv_to_qimage, convert_cv_to_pixmap, pipeline_with_violation_line ) # Import enhanced annotation utilities from utils.enhanced_annotation_utils import ( enhanced_draw_detections, draw_performance_overlay, enhanced_cv_to_qimage, enhanced_cv_to_pixmap ) # Import traffic light color detection utilities from red_light_violation_pipeline import RedLightViolationPipeline from utils.traffic_light_utils import detect_traffic_light_color, draw_traffic_light_status, ensure_traffic_light_color from utils.crosswalk_utils2 import detect_crosswalk_and_violation_line, draw_violation_line, get_violation_line_y from controllers.deepsort_tracker import DeepSortVehicleTracker from violation_finale.red_light_violation import RedLightViolationSystem, draw_violation_overlay TRAFFIC_LIGHT_CLASSES = ["traffic light", "trafficlight", "tl"] TRAFFIC_LIGHT_NAMES = ['trafficlight', 'traffic light', 'tl', 'signal'] def normalize_class_name(class_name): """Normalizes class names from different models/formats to a standard name""" if not class_name: return "" name_lower = class_name.lower() # Traffic light variants if name_lower in ['traffic light', 'trafficlight', 'traffic_light', 'tl', 'signal']: return 'traffic light' # Keep specific vehicle classes (car, truck, bus) separate # Just normalize naming variations within each class if name_lower in ['car', 'auto', 'automobile']: return 'car' elif name_lower in ['truck']: return 'truck' elif name_lower in ['bus']: return 'bus' elif name_lower in ['motorcycle', 'scooter', 'motorbike', 'bike']: return 'motorcycle' # Person variants if name_lower in ['person', 'pedestrian', 'human']: return 'person' # Other common classes can be added here return class_name def is_traffic_light(class_name): """Helper function to check if a class name is a traffic light with normalization""" if not class_name: return False normalized = normalize_class_name(class_name) return normalized == 'traffic light' class VideoController(QObject): frame_ready = Signal(object, object, dict) # QPixmap, detections, metrics raw_frame_ready = Signal(np.ndarray, list, float) # frame, detections, fps frame_np_ready = Signal(np.ndarray) # Direct NumPy frame signal for display stats_ready = Signal(dict) # Dictionary with stats (fps, detection_time, traffic_light) violation_detected = Signal(dict) # Signal emitted when a violation is detected def __init__(self, model_manager=None): """ Initialize video controller. Args: model_manager: Model manager instance for detection and violation """ super().__init__() self._running = False self.source = None self.source_type = None self.source_fps = 0 self.performance_metrics = {} self.mutex = QMutex() # Performance tracking self.processing_times = deque(maxlen=100) # Store last 100 processing times self.fps_history = deque(maxlen=100) # Store last 100 FPS values self.start_time = time.time() self.frame_count = 0 self.actual_fps = 0.0 self.model_manager = model_manager self.inference_model = None self.tracker = None self.current_frame = None self.current_detections = [] # Traffic light state tracking self.latest_traffic_light = {"color": "unknown", "confidence": 0.0} # Set up violation detection try: from controllers.red_light_violation_detector import RedLightViolationDetector self.violation_detector = RedLightViolationDetector() print("✅ Red light violation detector initialized") except Exception as e: self.violation_detector = None print(f"❌ Could not initialize violation detector: {e}") # Import crosswalk detection try: self.detect_crosswalk_and_violation_line = detect_crosswalk_and_violation_line self.draw_violation_line = draw_violation_line print("✅ Crosswalk detection utilities imported") except Exception as e: print(f"❌ Could not import crosswalk detection: {e}") self.detect_crosswalk_and_violation_line = lambda frame, *args: (None, None, {}) self.draw_violation_line = lambda frame, *args, **kwargs: frame # Configure thread self.thread = QThread() self.moveToThread(self.thread) self.thread.started.connect(self._run) # Performance measurement self.mutex = QMutex() self.condition = QWaitCondition() self.performance_metrics = { 'FPS': 0.0, 'Detection (ms)': 0.0, 'Total (ms)': 0.0 } # Setup render timer with more aggressive settings for UI updates self.render_timer = QTimer() self.render_timer.timeout.connect(self._process_frame) # Frame buffer self.current_frame = None self.current_detections = [] self.current_violations = [] # Debug counter for monitoring frame processing self.debug_counter = 0 # Initialize the traffic light color detection pipeline self.cv_violation_pipeline = RedLightViolationPipeline(debug=True) # Initialize vehicle tracker self.vehicle_tracker = DeepSortVehicleTracker() # Add red light violation system self.red_light_violation_system = RedLightViolationSystem() def set_source(self, source): """ Set video source (file path, camera index, or URL) Args: source: Video source - can be a camera index (int), file path (str), or URL (str). If None, defaults to camera 0. Returns: bool: True if source was set successfully, False otherwise """ print(f"đŸŽŦ VideoController.set_source called with: {source} (type: {type(source)})") # Store current state was_running = self._running # Stop current processing if running if self._running: print("âšī¸ Stopping current video processing") self.stop() try: # Handle source based on type with better error messages if source is None: print("âš ī¸ Received None source, defaulting to camera 0") self.source = 0 self.source_type = "camera" elif isinstance(source, str) and source.strip(): if os.path.exists(source): # Valid file path self.source = source self.source_type = "file" print(f"📄 Source set to file: {self.source}") elif source.lower().startswith(("http://", "https://", "rtsp://", "rtmp://")): # URL stream self.source = source self.source_type = "url" print(f"🌐 Source set to URL stream: {self.source}") elif source.isdigit(): # String camera index (convert to int) self.source = int(source) self.source_type = "camera" print(f"📹 Source set to camera index: {self.source}") else: # Try as device path or special string self.source = source self.source_type = "device" print(f"📱 Source set to device path: {self.source}") elif isinstance(source, int): # Camera index self.source = source self.source_type = "camera" print(f"📹 Source set to camera index: {self.source}") else: # Unrecognized - default to camera 0 with warning print(f"âš ī¸ Unrecognized source type: {type(source)}, defaulting to camera 0") self.source = 0 self.source_type = "camera" except Exception as e: print(f"❌ Error setting source: {e}") self.source = 0 self.source_type = "camera" return False # Get properties of the source (fps, dimensions, etc) print(f"🔍 Getting properties for source: {self.source}") success = self._get_source_properties() if success: print(f"✅ Successfully configured source: {self.source} ({self.source_type})") # Emit successful source change self.stats_ready.emit({ 'source_changed': True, 'source_type': self.source_type, 'fps': self.source_fps if hasattr(self, 'source_fps') else 0, 'dimensions': f"{self.frame_width}x{self.frame_height}" if hasattr(self, 'frame_width') else "unknown" }) # Restart if previously running if was_running: print("â–ļī¸ Restarting video processing with new source") self.start() else: print(f"❌ Failed to configure source: {self.source}") # Notify UI about the error self.stats_ready.emit({ 'source_changed': False, 'error': f"Invalid video source: {self.source}", 'source_type': self.source_type, 'fps': 0, 'detection_time_ms': "0", 'traffic_light_color': {"color": "unknown", "confidence": 0.0} }) return False # Return success status return success def _get_source_properties(self): """ Get properties of video source Returns: bool: True if source was successfully opened, False otherwise """ try: print(f"🔍 Opening video source for properties check: {self.source}") cap = cv2.VideoCapture(self.source) # Verify capture opened successfully if not cap.isOpened(): print(f"❌ Failed to open video source: {self.source}") return False # Read properties self.source_fps = cap.get(cv2.CAP_PROP_FPS) if self.source_fps <= 0: print("âš ī¸ Source FPS not available, using default 30 FPS") self.source_fps = 30.0 # Default if undetectable self.frame_width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH)) self.frame_height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT)) self.frame_count = int(cap.get(cv2.CAP_PROP_FRAME_COUNT)) # Try reading a test frame to confirm source is truly working ret, test_frame = cap.read() if not ret or test_frame is None: print("âš ī¸ Could not read test frame from source") # For camera sources, try one more time with delay if self.source_type == "camera": print("🔄 Retrying camera initialization...") time.sleep(1.0) # Wait a moment for camera to initialize ret, test_frame = cap.read() if not ret or test_frame is None: print("❌ Camera initialization failed after retry") cap.release() return False else: print("❌ Could not read frames from video source") cap.release() return False # Release the capture cap.release() print(f"✅ Video source properties: {self.frame_width}x{self.frame_height}, {self.source_fps} FPS") return True except Exception as e: print(f"❌ Error getting source properties: {e}") return False return False def start(self): """Start video processing""" if not self._running: self._running = True self.start_time = time.time() self.frame_count = 0 self.debug_counter = 0 print("DEBUG: Starting video processing thread") # Start the processing thread - add more detailed debugging if not self.thread.isRunning(): print("🚀 Thread not running, starting now...") try: self.thread.start() print("✅ Thread started successfully") print(f"🔄 Thread state: running={self.thread.isRunning()}, finished={self.thread.isFinished()}") except Exception as e: print(f"❌ Failed to start thread: {e}") import traceback traceback.print_exc() else: print("âš ī¸ Thread is already running!") print(f"🔄 Thread state: running={self.thread.isRunning()}, finished={self.thread.isFinished()}") # Start the render timer with a very aggressive interval (10ms = 100fps) # This ensures we can process frames as quickly as possible print("âąī¸ Starting render timer...") self.render_timer.start(10) print("✅ Render timer started at 100Hz") def stop(self): """Stop video processing""" if self._running: print("DEBUG: Stopping video processing") self._running = False self.render_timer.stop() # Properly terminate the thread self.thread.quit() if not self.thread.wait(3000): # Wait 3 seconds max self.thread.terminate() print("WARNING: Thread termination forced") # Clear the current frame self.mutex.lock() self.current_frame = None self.mutex.unlock() print("DEBUG: Video processing stopped") def capture_snapshot(self) -> np.ndarray: """Capture current frame""" if self.current_frame is not None: return self.current_frame.copy() return None def _run(self): """Main processing loop (runs in thread)""" try: # Print the source we're trying to open print(f"DEBUG: Opening video source: {self.source} (type: {type(self.source)})") cap = None # Initialize capture variable # Try to open source with more robust error handling max_retries = 3 retry_delay = 1.0 # seconds # Function to attempt opening the source with multiple retries def try_open_source(src, retries=max_retries, delay=retry_delay): for attempt in range(1, retries + 1): print(f"đŸŽĨ Opening source (attempt {attempt}/{retries}): {src}") try: capture = cv2.VideoCapture(src) if capture.isOpened(): # Try to read a test frame to confirm it's working ret, test_frame = capture.read() if ret and test_frame is not None: print(f"✅ Source opened successfully: {src}") # Reset capture position for file sources if isinstance(src, str) and os.path.exists(src): capture.set(cv2.CAP_PROP_POS_FRAMES, 0) return capture else: print(f"âš ī¸ Source opened but couldn't read frame: {src}") capture.release() else: print(f"âš ī¸ Failed to open source: {src}") # Retry after delay if attempt < retries: print(f"Retrying in {delay:.1f} seconds...") time.sleep(delay) except Exception as e: print(f"❌ Error opening source {src}: {e}") if attempt < retries: print(f"Retrying in {delay:.1f} seconds...") time.sleep(delay) print(f"❌ Failed to open source after {retries} attempts: {src}") return None # Handle different source types if isinstance(self.source, str) and os.path.exists(self.source): # It's a valid file path print(f"📄 Opening video file: {self.source}") cap = try_open_source(self.source) elif isinstance(self.source, int) or (isinstance(self.source, str) and self.source.isdigit()): # It's a camera index camera_idx = int(self.source) if isinstance(self.source, str) else self.source print(f"📹 Opening camera with index: {camera_idx}") # For cameras, try with different backend options if it fails cap = try_open_source(camera_idx) # If failed, try with DirectShow backend on Windows if cap is None and os.name == 'nt': print("🔄 Trying camera with DirectShow backend...") cap = try_open_source(camera_idx + cv2.CAP_DSHOW) else: # Try as a string source (URL or device path) print(f"🌐 Opening source as string: {self.source}") cap = try_open_source(str(self.source)) # Check if we successfully opened the source if cap is None: print(f"❌ Failed to open video source after all attempts: {self.source}") # Notify UI about the error self.stats_ready.emit({ 'error': f"Could not open video source: {self.source}", 'fps': "0", 'detection_time_ms': "0", 'traffic_light_color': {"color": "unknown", "confidence": 0.0} }) return # Check again to ensure capture is valid if not cap or not cap.isOpened(): print(f"ERROR: Could not open video source {self.source}") # Emit a signal to notify UI about the error self.stats_ready.emit({ 'error': f"Failed to open video source: {self.source}", 'fps': "0", 'detection_time_ms': "0", 'traffic_light_color': {"color": "unknown", "confidence": 0.0} }) return # Configure frame timing based on source FPS frame_time = 1.0 / self.source_fps if self.source_fps > 0 else 0.033 prev_time = time.time() # Log successful opening print(f"SUCCESS: Video source opened: {self.source}") print(f"Source info - FPS: {self.source_fps}, Size: {self.frame_width}x{self.frame_height}") # Main processing loop frame_error_count = 0 max_consecutive_errors = 10 while self._running and cap.isOpened(): try: ret, frame = cap.read() # Add critical frame debugging print(f"🟡 Frame read attempt: ret={ret}, frame={None if frame is None else frame.shape}") if not ret or frame is None: frame_error_count += 1 print(f"âš ī¸ Frame read error ({frame_error_count}/{max_consecutive_errors})") if frame_error_count >= max_consecutive_errors: print("❌ Too many consecutive frame errors, stopping video thread") break # Skip this iteration and try again time.sleep(0.1) # Wait a bit before trying again continue # Reset the error counter if we successfully got a frame frame_error_count = 0 except Exception as e: print(f"❌ Critical error reading frame: {e}") frame_error_count += 1 if frame_error_count >= max_consecutive_errors: print("❌ Too many errors, stopping video thread") break continue # Detection and violation processing process_start = time.time() # Process detections detection_start = time.time() detections = [] if self.model_manager: detections = self.model_manager.detect(frame) # Normalize class names for consistency and check for traffic lights traffic_light_indices = [] for i, det in enumerate(detections): if 'class_name' in det: original_name = det['class_name'] normalized_name = normalize_class_name(original_name) # Keep track of traffic light indices if normalized_name == 'traffic light' or original_name == 'traffic light': traffic_light_indices.append(i) if original_name != normalized_name: print(f"📊 Normalized class name: '{original_name}' -> '{normalized_name}'") det['class_name'] = normalized_name # Ensure we have at least one traffic light for debugging if not traffic_light_indices and self.source_type == 'video': print("âš ī¸ No traffic lights detected, checking for objects that might be traffic lights...") # Try lowering the confidence threshold specifically for traffic lights # This is only for debugging purposes if self.model_manager and hasattr(self.model_manager, 'detect'): try: low_conf_detections = self.model_manager.detect(frame, conf_threshold=0.2) for det in low_conf_detections: if 'class_name' in det and det['class_name'] == 'traffic light': if det not in detections: print(f"đŸšĻ Found low confidence traffic light: {det['confidence']:.2f}") detections.append(det) except: pass detection_time = (time.time() - detection_start) * 1000 # Violation detection is disabled violation_start = time.time() violations = [] # if self.model_manager and detections: # violations = self.model_manager.detect_violations( # detections, frame, time.time() # ) violation_time = (time.time() - violation_start) * 1000 # Update tracking if available if self.model_manager: detections = self.model_manager.update_tracking(detections, frame) # If detections are returned as tuples, convert to dicts for downstream code if detections and isinstance(detections[0], tuple): # Convert (id, bbox, conf, class_id) to dict detections = [ {'id': d[0], 'bbox': d[1], 'confidence': d[2], 'class_id': d[3]} for d in detections ] # Calculate timing metrics process_time = (time.time() - process_start) * 1000 self.processing_times.append(process_time) # Update FPS now = time.time() self.frame_count += 1 elapsed = now - self.start_time if elapsed > 0: self.actual_fps = self.frame_count / elapsed fps_smoothed = 1.0 / (now - prev_time) if now > prev_time else 0 prev_time = now # Update metrics self.performance_metrics = { 'FPS': f"{fps_smoothed:.1f}", 'Detection (ms)': f"{detection_time:.1f}", 'Total (ms)': f"{process_time:.1f}" } # Store current frame data (thread-safe) self.mutex.lock() self.current_frame = frame.copy() self.current_detections = detections self.mutex.unlock() # Process frame with annotations before sending to UI annotated_frame = frame.copy() # Draw detections with bounding boxes for visual feedback if detections and len(detections) > 0: print(f"Drawing {len(detections)} detection boxes on frame") for det in detections: if 'bbox' in det: bbox = det['bbox'] x1, y1, x2, y2 = map(int, bbox) label = det.get('class_name', 'object') confidence = det.get('confidence', 0.0) # Robustness: ensure label and confidence are not None if label is None: label = 'object' if confidence is None: confidence = 0.0 class_id = det.get('class_id', -1) # Use red color if id==9 or is traffic light, else green if class_id == 9 or is_traffic_light(label): box_color = (0, 0, 255) # Red in BGR else: box_color = (0, 255, 0) # Green in BGR if 'id' in det: id_text = f"ID: {det['id']}" # Draw rectangle and label cv2.rectangle(annotated_frame, (x1, y1), (x2, y2), box_color, 2) cv2.putText(annotated_frame, f"{id_text} {label} ", (x1, y1-10), cv2.FONT_HERSHEY_SIMPLEX, 0.5, box_color, 2) # Draw vehicle ID if present # if 'id' in det: # id_text = f"ID: {det['id']}" # # Calculate text size for background # (tw, th), baseline = cv2.getTextSize(id_text, cv2.FONT_HERSHEY_SIMPLEX, 0.8, 2) # # Draw filled rectangle for background (top-left of bbox) # cv2.rectangle(annotated_frame, (x1, y1 - th - 8), (x1 + tw + 4, y1), (0, 0, 0), -1) # # Draw the ID text in bold yellow # cv2.putText(annotated_frame, id_text, (x1 + 2, y1 - 4), cv2.FONT_HERSHEY_SIMPLEX, 0.8, (0, 255, 255), 2, cv2.LINE_AA) # print(f"[DEBUG] Detection ID: {det['id']} BBOX: {bbox} CLASS: {label} CONF: {confidence:.2f}") if class_id == 9 or is_traffic_light(label): try: light_info = detect_traffic_light_color(annotated_frame, [x1, y1, x2, y2]) if light_info.get("color", "unknown") == "unknown": light_info = ensure_traffic_light_color(annotated_frame, [x1, y1, x2, y2]) det['traffic_light_color'] = light_info annotated_frame = draw_traffic_light_status(annotated_frame, bbox, light_info) # --- Update latest_traffic_light for UI/console --- self.latest_traffic_light = light_info except Exception as e: print(f"[WARN] Could not detect/draw traffic light color: {e}") # Add FPS display directly on frame # cv2.putText(annotated_frame, f"FPS: {fps_smoothed:.1f}", (10, 30), # cv2.FONT_HERSHEY_SIMPLEX, 1, (255, 255, 255), 2) # # --- Always draw detected traffic light color indicator at top --- # color = self.latest_traffic_light.get('color', 'unknown') if isinstance(self.latest_traffic_light, dict) else str(self.latest_traffic_light) # confidence = self.latest_traffic_light.get('confidence', 0.0) if isinstance(self.latest_traffic_light, dict) else 0.0 # indicator_size = 30 # margin = 10 # status_colors = { # "red": (0, 0, 255), # "yellow": (0, 255, 255), # "green": (0, 255, 0), # "unknown": (200, 200, 200) # } # draw_color = status_colors.get(color, (200, 200, 200)) # # Draw circle indicator # cv2.circle( # annotated_frame, # (annotated_frame.shape[1] - margin - indicator_size, margin + indicator_size), # indicator_size, # draw_color, # -1 # ) # # Add color text # cv2.putText( # annotated_frame, # f"{color.upper()} ({confidence:.2f})", # (annotated_frame.shape[1] - margin - indicator_size - 120, margin + indicator_size + 10), # cv2.FONT_HERSHEY_SIMPLEX, # 0.7, # (0, 0, 0), # 2 # ) # Signal for raw data subscribers (now without violations) # Emit with correct number of arguments try: self.raw_frame_ready.emit(frame.copy(), detections, fps_smoothed) print(f"✅ raw_frame_ready signal emitted with {len(detections)} detections, fps={fps_smoothed:.1f}") except Exception as e: print(f"❌ Error emitting raw_frame_ready: {e}") import traceback traceback.print_exc()# Emit the NumPy frame signal for direct display - annotated version for visual feedback print(f"🔴 Emitting frame_np_ready signal with annotated_frame shape: {annotated_frame.shape}") try: # Make sure the frame can be safely transmitted over Qt's signal system # Create a contiguous copy of the array frame_copy = np.ascontiguousarray(annotated_frame) print(f"🔍 Debug - Before emission: frame_copy type={type(frame_copy)}, shape={frame_copy.shape}, is_contiguous={frame_copy.flags['C_CONTIGUOUS']}") self.frame_np_ready.emit(frame_copy) print("✅ frame_np_ready signal emitted successfully") except Exception as e: print(f"❌ Error emitting frame: {e}") import traceback traceback.print_exc() # Emit stats signal for performance monitoring stats = { 'fps': fps_smoothed, 'detection_fps': fps_smoothed, # Numeric value for analytics 'detection_time': detection_time, 'detection_time_ms': detection_time, # Numeric value for analytics 'traffic_light_color': self.latest_traffic_light } # Print detailed stats for debugging tl_color = "unknown" if isinstance(self.latest_traffic_light, dict): tl_color = self.latest_traffic_light.get('color', 'unknown') elif isinstance(self.latest_traffic_light, str): tl_color = self.latest_traffic_light print(f"đŸŸĸ Stats Updated: FPS={fps_smoothed:.2f}, Inference={detection_time:.2f}ms, Traffic Light={tl_color}") # Emit stats signal self.stats_ready.emit(stats) # Control processing rate for file sources if isinstance(self.source, str) and self.source_fps > 0: frame_duration = time.time() - process_start if frame_duration < frame_time: time.sleep(frame_time - frame_duration) cap.release() except Exception as e: print(f"Video processing error: {e}") import traceback traceback.print_exc() finally: self._running = False def _process_frame(self): """Process current frame for display with improved error handling""" try: self.mutex.lock() if self.current_frame is None: print("âš ī¸ No frame available to process") self.mutex.unlock() # Check if we're running - if not, this is expected behavior if not self._running: return # If we are running but have no frame, create a blank frame with error message h, w = 480, 640 # Default size blank_frame = np.zeros((h, w, 3), dtype=np.uint8) cv2.putText(blank_frame, "No video input", (w//2-100, h//2), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 0, 255), 2) # Emit this blank frame try: self.frame_np_ready.emit(blank_frame) except Exception as e: print(f"Error emitting blank frame: {e}") return # Make a copy of the data we need try: frame = self.current_frame.copy() detections = self.current_detections.copy() if self.current_detections else [] violations = [] # Violations are disabled metrics = self.performance_metrics.copy() except Exception as e: print(f"Error copying frame data: {e}") self.mutex.unlock() return self.mutex.unlock() except Exception as e: print(f"Critical error in _process_frame initialization: {e}") import traceback traceback.print_exc() try: self.mutex.unlock() except: pass return try: # --- Always use the same annotated_frame for all overlays --- annotated_frame = frame.copy() # 1. Draw detection bounding boxes and traffic light overlays for det in detections: if 'bbox' in det: bbox = det['bbox'] x1, y1, x2, y2 = map(int, bbox) label = det.get('class_name', 'object') confidence = det.get('confidence', 0.0) # Robustness: ensure label and confidence are not None if label is None: label = 'object' if confidence is None: confidence = 0.0 class_id = det.get('class_id', -1) if class_id == 9 or is_traffic_light(label): box_color = (0, 0, 255) else: box_color = (0, 255, 0) cv2.rectangle(annotated_frame, (x1, y1), (x2, y2), box_color, 2) cv2.putText(annotated_frame, f"{label} {confidence:.2f}", (x1, y1-10), cv2.FONT_HERSHEY_SIMPLEX, 0.5, box_color, 2) # Draw vehicle ID if present if 'id' in det: id_text = f"ID: {det['id']}" # Calculate text size for background (tw, th), baseline = cv2.getTextSize(id_text, cv2.FONT_HERSHEY_SIMPLEX, 0.8, 2) # Draw filled rectangle for background (top-left of bbox) cv2.rectangle(annotated_frame, (x1, y1 - th - 8), (x1 + tw + 4, y1), (0, 0, 0), -1) # Draw the ID text in bold yellow cv2.putText(annotated_frame, id_text, (x1 + 2, y1 - 4), cv2.FONT_HERSHEY_SIMPLEX, 0.8, (0, 255, 255), 2, cv2.LINE_AA) print(f"[DEBUG] Detection ID: {det['id']} BBOX: {bbox} CLASS: {label} CONF: {confidence:.2f}") # Draw traffic light color indicator if this is a traffic light if class_id == 9 or is_traffic_light(label): try: light_info = detect_traffic_light_color(annotated_frame, [x1, y1, x2, y2]) if light_info.get("color", "unknown") == "unknown": light_info = ensure_traffic_light_color(annotated_frame, [x1, y1, x2, y2]) det['traffic_light_color'] = light_info annotated_frame = draw_traffic_light_status(annotated_frame, bbox, light_info) self.latest_traffic_light = light_info except Exception as e: print(f"[WARN] Could not detect/draw traffic light color: {e}") # 2. Robust crosswalk/stop line logic integration # Use traffic light bbox center if available traffic_light_bbox = None for det in detections: if is_traffic_light(det.get('class_name')) and 'bbox' in det: traffic_light_bbox = det['bbox'] break traffic_light_pos = None if traffic_light_bbox: tl_x = (traffic_light_bbox[0] + traffic_light_bbox[2]) // 2 tl_y = (traffic_light_bbox[1] + traffic_light_bbox[3]) // 2 traffic_light_pos = (tl_x, tl_y) # Call robust detection method violation_line, crosswalk_detected, stop_line_detected, violation_confidence = self._detect_violation_line_video_controller(annotated_frame, traffic_light_pos) # Draw violation line if valid if violation_line is not None: start_pt, end_pt = violation_line line_color = (0, 255, 255) if not stop_line_detected else (255, 0, 0) cv2.line(annotated_frame, start_pt, end_pt, line_color, 8) label = f"Violation Line ({'crosswalk' if crosswalk_detected else 'stop line' if stop_line_detected else 'default'})" cv2.putText(annotated_frame, label, (10, start_pt[1] - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.7, line_color, 2) print(f"[DEBUG] Violation line drawn at y={start_pt[1]}, type={label}") else: print(f"[DEBUG] No valid violation line detected.") # --- Red light violation detection and overlay --- # Get violation line y (if available) violation_line_y = None if violation_line is not None: violation_line_y = start_pt[1] # Run violation detection print(f"đŸŸĸ Type of red_light_violation_system: {type(self.red_light_violation_system)}") print(f"đŸŸĸ Args to process_frame: frame={type(frame)}, detections={type(detections)}, traffic_light_bbox={traffic_light_bbox}, frame_idx=0") print("[DEBUG] About to call RedLightViolationSystem.process_frame") violations = self.red_light_violation_system.process_frame( frame, detections, traffic_light_bbox if traffic_light_bbox else [0,0,0,0], 0 ) print("đŸŸĸ Finished calling process_frame") # Draw violation overlay (including tracked positions) annotated_frame = draw_violation_overlay( annotated_frame, violations, violation_line_y, vehicle_tracks=self.red_light_violation_system.vehicle_tracks ) # 3. Add performance overlays, test lines, and debug marker on the same annotated_frame annotated_frame = draw_performance_overlay(annotated_frame, metrics) cv2.circle(annotated_frame, (20, 20), 10, (255, 255, 0), -1) # Convert BGR to RGB before display (for PyQt/PySide) frame_rgb = cv2.cvtColor(annotated_frame, cv2.COLOR_BGR2RGB) # Display the RGB frame in the UI (replace with your display logic) # Example: self.image_label.setPixmap(QPixmap.fromImage(QImage(frame_rgb.data, w, h, QImage.Format_RGB888))) except Exception as e: print(f"Error in _process_frame: {e}") import traceback traceback.print_exc() def _detect_violation_line_video_controller(self, frame: np.ndarray, traffic_light_pos=None): """ Robust crosswalk/stop line logic for VideoController integration. Returns: (violation_line, crosswalk_detected, stop_line_detected, violation_confidence) """ if frame is None: print("Frame is None!") return None, False, False, 0.0 print(f"Traffic light position: {traffic_light_pos}") frame_height, frame_width = frame.shape[:2] # --- Crosswalk detection --- crosswalk_line, crosswalk_conf, crosswalk_dist = self._detect_crosswalk(frame, traffic_light_pos) print(f"Crosswalk Line: {crosswalk_line}") # --- Stop line detection --- stop_line, stop_conf, stop_dist = self._detect_stop_line(frame, traffic_light_pos) print(f"Stop Line: {stop_line}") best_line, best_type, best_conf = None, None, 0.0 # Select the nearest valid line to the traffic light if known if traffic_light_pos: candidates = [] if crosswalk_line: candidates.append((crosswalk_line, 'crosswalk', crosswalk_conf, crosswalk_dist)) if stop_line: candidates.append((stop_line, 'stop_line', stop_conf, stop_dist)) if candidates: best = min(candidates, key=lambda x: x[3]) best_line, best_type, best_conf = best[0], best[1], best[2] else: if crosswalk_line and crosswalk_conf >= stop_conf: best_line, best_type, best_conf = crosswalk_line, 'crosswalk', crosswalk_conf elif stop_line: best_line, best_type, best_conf = stop_line, 'stop_line', stop_conf if best_line: crosswalk_detected = (best_type == 'crosswalk') stop_line_detected = (best_type == 'stop_line') violation_confidence = best_conf return best_line, crosswalk_detected, stop_line_detected, violation_confidence # Fallback: Use default line at 75% height or relative to traffic light if traffic_light_pos: offset = int(0.15 * frame_height) fallback_y = min(traffic_light_pos[1] + offset, frame_height - 1) else: fallback_y = int(frame_height * 0.75) return ((0, fallback_y), (frame_width, fallback_y)), False, False, 0.3 def _detect_crosswalk(self, frame: np.ndarray, traffic_light_pos=None): try: gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY) _, thresh = cv2.threshold(gray, self.crosswalk_threshold, 255, cv2.THRESH_BINARY) eroded = cv2.erode(thresh, self.erosion_kernel, iterations=1) cleaned = cv2.dilate(eroded, self.dilation_kernel, iterations=2) contours, _ = cv2.findContours(cleaned, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE) crosswalk_candidates = [] for contour in contours: area = cv2.contourArea(contour) if area > self.min_crosswalk_area: epsilon = 0.02 * cv2.arcLength(contour, True) approx = cv2.approxPolyDP(contour, epsilon, True) if 4 <= len(approx) <= 8: x, y, w, h = cv2.boundingRect(contour) aspect_ratio = w / h if h > 0 else 0 if 2 < aspect_ratio < 10: roi = cleaned[y:y+h, x:x:x+w] lines = cv2.HoughLinesP(roi, 1, np.pi/180, threshold=30, minLineLength=int(0.5*w), maxLineGap=10) if lines is not None: angles = [] for l in lines: x1, y1, x2, y2 = l[0] angle = np.degrees(np.arctan2(y2-y1, x2-x1)) angles.append(angle) if angles and np.std(angles) < 15 and np.all(np.abs(np.abs(angles)-90) < 20): crosswalk_candidates.append((contour, x, y, w, h, area)) if not crosswalk_candidates: return None, 0.0, float('inf') if traffic_light_pos: best = min(crosswalk_candidates, key=lambda c: self._distance_to_traffic_light((c[1],c[2],c[3],c[4]), traffic_light_pos)) else: best = max(crosswalk_candidates, key=lambda c: c[5]) _, x, y, w, h, _ = best offset = int(0.1 * h) violation_y = max(y - offset, 0) frame_width = frame.shape[1] confidence = 0.9 dist = self._distance_to_traffic_light((x, y, w, h), traffic_light_pos) if traffic_light_pos else float('inf') return ((0, violation_y), (frame_width, violation_y)), confidence, dist except Exception as e: print(f"Error in crosswalk detection: {e}") return None, 0.0, float('inf') def _detect_stop_line(self, frame: np.ndarray, traffic_light_pos=None): try: gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY) frame_height, frame_width = frame.shape[:2] roi_start = int(frame_height * 0.5) roi = gray[roi_start:, :] adaptive_thresh = cv2.adaptiveThreshold( roi, 255, cv2.ADAPTIVE_THRESH_GAUSSIAN_C, cv2.THRESH_BINARY, 11, 2 ) edges = cv2.Canny(adaptive_thresh, 50, 150, apertureSize=3) lines = cv2.HoughLinesP( edges, rho=1, theta=np.pi/180, threshold=100, minLineLength=80, maxLineGap=20 ) if lines is None: return None, 0.0, float('inf') horizontal_lines = [] for line in lines: x1, y1, x2, y2 = line[0] if abs(y2 - y1) < 15: length = math.sqrt((x2 - x1)**2 + (y2 - y1)**2) y_avg = (y1 + y2) // 2 + roi_start horizontal_lines.append((length, y_avg, x1, x2)) if not horizontal_lines: return None, 0.0, float('inf') best_line = max(horizontal_lines, key=lambda x: x[0]) _, y_pos, x1, x2 = best_line offset = int(0.05 * frame_height) violation_y = max(y_pos - offset, 0) confidence = 0.7 dist = self._distance_to_traffic_light((x1, y_pos, x2-x1, 1), traffic_light_pos) if traffic_light_pos else float('inf') return ((0, violation_y), (frame_width, violation_y)), confidence, dist except Exception as e: print(f"Error in stop line detection: {e}") return None, 0.0, float('inf') def _distance_to_traffic_light(self, contour_or_rect, traffic_light_pos): if not traffic_light_pos: return float('inf') if isinstance(contour_or_rect, tuple): x, y, w, h = contour_or_rect cx, cy = x + w // 2, y + h // 2 else: x, y, w, h = cv2.boundingRect(contour_or_rect) cx, cy = x + w // 2, y + h // 2 return np.linalg.norm(np.array((cx, cy)) - np.array(traffic_light_pos)) def process_vehicle_tracking(self, detections, frame): """ Assigns IDs to vehicles using DeepSORT and returns list of dicts with ID and bbox. Only valid vehicle classes are tracked. Enhances class mapping and filtering. detections: list of dicts with keys ['bbox', 'confidence', 'class'] frame: current BGR frame Returns: list of dicts with keys ['id', 'bbox', 'confidence', 'class'] """ # Define valid vehicle classes and their canonical names vehicle_classes = { 'car': 0, 'truck': 1, 'bus': 2, 'motorcycle': 3, 'van': 4, 'bicycle': 5 } # Accept common variants and filter out non-vehicles valid_names = set(vehicle_classes.keys()) class_aliases = { 'car': ['car', 'auto', 'automobile', 'sedan', 'hatchback'], 'truck': ['truck', 'lorry', 'pickup'], 'bus': ['bus', 'coach'], 'motorcycle': ['motorcycle', 'motorbike', 'bike', 'scooter'], 'van': ['van', 'minivan'], 'bicycle': ['bicycle', 'cycle', 'bike'] } def canonical_class(cls): for canon, aliases in class_aliases.items(): if cls.lower() in aliases: return canon return None dets = [] for det in detections: canon = canonical_class(det['class']) if canon is not None: x1, y1, x2, y2 = det['bbox'] conf = det.get('confidence', 1.0) class_id = vehicle_classes[canon] dets.append([x1, y1, x2, y2, conf, class_id]) tracks = self.vehicle_tracker.update(dets, frame=frame) tracked_vehicles = [] for track_id, ltrb, conf, class_id in tracks: # Map back to canonical class name class_name = [k for k, v in vehicle_classes.items() if v == class_id] class_name = class_name[0] if class_name else 'unknown' tracked_vehicles.append({ 'id': track_id, 'bbox': ltrb, 'confidence': conf, 'class': class_name }) return tracked_vehicles ######working from PySide6.QtCore import QObject, Signal, QThread, Qt, QMutex, QWaitCondition, QTimer from PySide6.QtGui import QImage, QPixmap import cv2 import time import numpy as np from collections import deque from typing import Dict, List, Optional import os import sys import math import datetime import traceback # Add parent directory to path for imports sys.path.append(os.path.dirname(os.path.dirname(os.path.abspath(__file__)))) # Import utilities from utils.annotation_utils import ( draw_detections, draw_performance_metrics, resize_frame_for_display, convert_cv_to_qimage, convert_cv_to_pixmap ) # Import enhanced annotation utilities from utils.enhanced_annotation_utils import ( enhanced_draw_detections, draw_performance_overlay, enhanced_cv_to_qimage, enhanced_cv_to_pixmap, ) # Import traffic light color detection utilities from utils.traffic_light_utils import detect_traffic_light_color, draw_traffic_light_status, ensure_traffic_light_color from controllers.deepsort_tracker import DeepSortVehicleTracker TRAFFIC_LIGHT_CLASSES = ["traffic light", "trafficlight", "tl"] TRAFFIC_LIGHT_NAMES = ['trafficlight', 'traffic light', 'tl', 'signal'] def normalize_class_name(class_name): """Normalizes class names from different models/formats to a standard name""" if not class_name: return "" name_lower = class_name.lower() # Traffic light variants if name_lower in ['traffic light', 'trafficlight', 'traffic_light', 'tl', 'signal']: return 'traffic light' # Keep specific vehicle classes (car, truck, bus) separate # Just normalize naming variations within each class if name_lower in ['car', 'auto', 'automobile']: return 'car' elif name_lower in ['truck']: return 'truck' elif name_lower in ['bus']: return 'bus' elif name_lower in ['motorcycle', 'scooter', 'motorbike', 'bike']: return 'motorcycle' # Person variants if name_lower in ['person', 'pedestrian', 'human']: return 'person' # Other common classes can be added here return class_name def is_traffic_light(class_name): """Helper function to check if a class name is a traffic light with normalization""" if not class_name: return False normalized = normalize_class_name(class_name) return normalized == 'traffic light' class VideoController(QObject): frame_ready = Signal(object, object, dict) # QPixmap, detections, metrics raw_frame_ready = Signal(np.ndarray, list, float) # frame, detections, fps frame_np_ready = Signal(np.ndarray) # Direct NumPy frame signal for display frame_np_with_violations = Signal(np.ndarray, list, list) # frame, detections, violators stats_ready = Signal(dict) # Dictionary with stats (fps, detection_time, traffic_light) violation_detected = Signal(dict) # Signal emitted when a violation is detected def __init__(self, model_manager=None): """ Initialize video controller. Args: model_manager: Model manager instance for detection and violation """ super().__init__() self._running = False self.source = None self.source_type = None self.source_fps = 0 self.performance_metrics = {} self.mutex = QMutex() # Performance tracking self.processing_times = deque(maxlen=100) # Store last 100 processing times self.fps_history = deque(maxlen=100) # Store last 100 FPS values self.start_time = time.time() self.frame_count = 0 self.actual_fps = 0.0 self.model_manager = model_manager self.inference_model = None self.tracker = None self.current_frame = None self.current_detections = [] # Traffic light state tracking self.latest_traffic_light = {"color": "unknown", "confidence": 0.0} # Set up violation detection try: from controllers.red_light_violation_detector import RedLightViolationDetector self.violation_detector = RedLightViolationDetector() print("✅ Red light violation detector initialized") except Exception as e: self.violation_detector = None print(f"❌ Could not initialize violation detector: {e}") # Import crosswalk detection try: from utils.crosswalk_utils2 import detect_crosswalk_and_violation_line, draw_violation_line self.detect_crosswalk_and_violation_line = detect_crosswalk_and_violation_line self.draw_violation_line = draw_violation_line print("✅ Crosswalk detection utilities imported") except Exception as e: print(f"❌ Could not import crosswalk detection: {e}") self.detect_crosswalk_and_violation_line = lambda frame, *args: (None, None, {}) self.draw_violation_line = lambda frame, *args, **kwargs: frame # Configure thread self.thread = QThread() self.moveToThread(self.thread) self.thread.started.connect(self._run) # Performance measurement self.mutex = QMutex() self.condition = QWaitCondition() self.performance_metrics = { 'FPS': 0.0, 'Detection (ms)': 0.0, 'Total (ms)': 0.0 } # Setup render timer with more aggressive settings for UI updates self.render_timer = QTimer() self.render_timer.timeout.connect(self._process_frame) # Frame buffer self.current_frame = None self.current_detections = [] self.current_violations = [] # Debug counter for monitoring frame processing self.debug_counter = 0 # Initialize the traffic light color detection pipeline # self.cv_violation_pipeline = RedLightViolationPipeline(debug=True) # Initialize vehicle tracker self.vehicle_tracker = DeepSortVehicleTracker() # Add red light violation system with tracker # self.red_light_violation_system = RedLightViolationSystem( # vehicle_tracker=self.vehicle_tracker, # config={ # 'min_confidence': 0.5, # 'min_violation_frames': 5 # } # ) self.last_violation_line_y = None # For overlay self.violation_states = {} # For violation state machine self.frame_idx = 0 # Initialize frame index for violation tracking def set_source(self, source): """ Set video source (file path, camera index, or URL) Args: source: Video source - can be a camera index (int), file path (str), or URL (str). If None, defaults to camera 0. Returns: bool: True if source was set successfully, False otherwise """ print(f"đŸŽŦ VideoController.set_source called with: {source} (type: {type(source)})") # Store current state was_running = self._running # Stop current processing if running if self._running: print("âšī¸ Stopping current video processing") self.stop() try: # Handle source based on type with better error messages if source is None: print("âš ī¸ Received None source, defaulting to camera 0") self.source = 0 self.source_type = "camera" elif isinstance(source, str) and source.strip(): if os.path.exists(source): # Valid file path self.source = source self.source_type = "file" print(f"📄 Source set to file: {self.source}") elif source.lower().startswith(("http://", "https://", "rtsp://", "rtmp://")): # URL stream self.source = source self.source_type = "url" print(f"🌐 Source set to URL stream: {self.source}") elif source.isdigit(): # String camera index (convert to int) self.source = int(source) self.source_type = "camera" print(f"📹 Source set to camera index: {self.source}") else: # Try as device path or special string self.source = source self.source_type = "device" print(f"📱 Source set to device path: {self.source}") elif isinstance(source, int): # Camera index self.source = source self.source_type = "camera" print(f"📹 Source set to camera index: {self.source}") else: # Unrecognized - default to camera 0 with warning print(f"âš ī¸ Unrecognized source type: {type(source)}, defaulting to camera 0") self.source = 0 self.source_type = "camera" except Exception as e: print(f"❌ Error setting source: {e}") self.source = 0 self.source_type = "camera" return False # Get properties of the source (fps, dimensions, etc) print(f"🔍 Getting properties for source: {self.source}") success = self._get_source_properties() if success: print(f"✅ Successfully configured source: {self.source} ({self.source_type})") # Emit successful source change self.stats_ready.emit({ 'source_changed': True, 'source_type': self.source_type, 'fps': self.source_fps if hasattr(self, 'source_fps') else 0, 'dimensions': f"{self.frame_width}x{self.frame_height}" if hasattr(self, 'frame_width') else "unknown" }) # Restart if previously running if was_running: print("â–ļī¸ Restarting video processing with new source") self.start() else: print(f"❌ Failed to configure source: {self.source}") # Notify UI about the error self.stats_ready.emit({ 'source_changed': False, 'error': f"Invalid video source: {self.source}", 'source_type': self.source_type, 'fps': 0, 'detection_time_ms': "0", 'traffic_light_color': {"color": "unknown", "confidence": 0.0} }) return False # Return success status return success def _get_source_properties(self): """ Get properties of video source Returns: bool: True if source was successfully opened, False otherwise """ try: print(f"🔍 Opening video source for properties check: {self.source}") cap = cv2.VideoCapture(self.source) # Verify capture opened successfully if not cap.isOpened(): print(f"❌ Failed to open video source: {self.source}") return False # Read properties self.source_fps = cap.get(cv2.CAP_PROP_FPS) if self.source_fps <= 0: print("âš ī¸ Source FPS not available, using default 30 FPS") self.source_fps = 30.0 # Default if undetectable self.frame_width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH)) self.frame_height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT)) self.frame_count = int(cap.get(cv2.CAP_PROP_FRAME_COUNT)) # Try reading a test frame to confirm source is truly working ret, test_frame = cap.read() if not ret or test_frame is None: print("âš ī¸ Could not read test frame from source") # For camera sources, try one more time with delay if self.source_type == "camera": print("🔄 Retrying camera initialization...") time.sleep(1.0) # Wait a moment for camera to initialize ret, test_frame = cap.read() if not ret or test_frame is None: print("❌ Camera initialization failed after retry") cap.release() return False else: print("❌ Could not read frames from video source") cap.release() return False # Release the capture cap.release() print(f"✅ Video source properties: {self.frame_width}x{self.frame_height}, {self.source_fps} FPS") return True except Exception as e: print(f"❌ Error getting source properties: {e}") return False return False def start(self): """Start video processing""" if not self._running: self._running = True self.start_time = time.time() self.frame_count = 0 self.debug_counter = 0 print("DEBUG: Starting video processing thread") # Start the processing thread - add more detailed debugging if not self.thread.isRunning(): print("🚀 Thread not running, starting now...") try: self.thread.start() print("✅ Thread started successfully") print(f"🔄 Thread state: running={self.thread.isRunning()}, finished={self.thread.isFinished()}") except Exception as e: print(f"❌ Failed to start thread: {e}") import traceback traceback.print_exc() else: print("âš ī¸ Thread is already running!") print(f"🔄 Thread state: running={self.thread.isRunning()}, finished={self.thread.isFinished()}") # Start the render timer with a very aggressive interval (10ms = 100fps) # This ensures we can process frames as quickly as possible print("âąī¸ Starting render timer...") self.render_timer.start(10) print("✅ Render timer started at 100Hz") def stop(self): """Stop video processing""" if self._running: print("DEBUG: Stopping video processing") self._running = False self.render_timer.stop() # Properly terminate the thread self.thread.quit() if not self.thread.wait(3000): # Wait 3 seconds max self.thread.terminate() print("WARNING: Thread termination forced") # Clear the current frame self.mutex.lock() self.current_frame = None self.mutex.unlock() print("DEBUG: Video processing stopped") def capture_snapshot(self) -> np.ndarray: """Capture current frame""" if self.current_frame is not None: return self.current_frame.copy() return None def _run(self): """Main processing loop (runs in thread)""" try: # Print the source we're trying to open print(f"DEBUG: Opening video source: {self.source} (type: {type(self.source)})") cap = None # Initialize capture variable # Try to open source with more robust error handling max_retries = 3 retry_delay = 1.0 # seconds # Function to attempt opening the source with multiple retries def try_open_source(src, retries=max_retries, delay=retry_delay): for attempt in range(1, retries + 1): print(f"đŸŽĨ Opening source (attempt {attempt}/{retries}): {src}") try: capture = cv2.VideoCapture(src) if capture.isOpened(): # Try to read a test frame to confirm it's working ret, test_frame = capture.read() if ret and test_frame is not None: print(f"✅ Source opened successfully: {src}") # Reset capture position for file sources if isinstance(src, str) and os.path.exists(src): capture.set(cv2.CAP_PROP_POS_FRAMES, 0) return capture else: print(f"âš ī¸ Source opened but couldn't read frame: {src}") capture.release() else: print(f"âš ī¸ Failed to open source: {src}") # Retry after delay if attempt < retries: print(f"Retrying in {delay:.1f} seconds...") time.sleep(delay) except Exception as e: print(f"❌ Error opening source {src}: {e}") if attempt < retries: print(f"Retrying in {delay:.1f} seconds...") time.sleep(delay) print(f"❌ Failed to open source after {retries} attempts: {src}") return None # Handle different source types if isinstance(self.source, str) and os.path.exists(self.source): # It's a valid file path print(f"📄 Opening video file: {self.source}") cap = try_open_source(self.source) elif isinstance(self.source, int) or (isinstance(self.source, str) and self.source.isdigit()): # It's a camera index camera_idx = int(self.source) if isinstance(self.source, str) else self.source print(f"📹 Opening camera with index: {camera_idx}") # For cameras, try with different backend options if it fails cap = try_open_source(camera_idx) # If failed, try with DirectShow backend on Windows if cap is None and os.name == 'nt': print("🔄 Trying camera with DirectShow backend...") cap = try_open_source(camera_idx + cv2.CAP_DSHOW) else: # Try as a string source (URL or device path) print(f"🌐 Opening source as string: {self.source}") cap = try_open_source(str(self.source)) # Check if we successfully opened the source if cap is None: print(f"❌ Failed to open video source after all attempts: {self.source}") # Notify UI about the error self.stats_ready.emit({ 'error': f"Could not open video source: {self.source}", 'fps': "0", 'detection_time_ms': "0", 'traffic_light_color': {"color": "unknown", "confidence": 0.0} }) return # Check again to ensure capture is valid if not cap or not cap.isOpened(): print(f"ERROR: Could not open video source {self.source}") # Emit a signal to notify UI about the error self.stats_ready.emit({ 'error': f"Failed to open video source: {self.source}", 'fps': "0", 'detection_time_ms': "0", 'traffic_light_color': {"color": "unknown", "confidence": 0.0} }) return # Configure frame timing based on source FPS frame_time = 1.0 / self.source_fps if self.source_fps > 0 else 0.033 prev_time = time.time() # Log successful opening print(f"SUCCESS: Video source opened: {self.source}") print(f"Source info - FPS: {self.source_fps}, Size: {self.frame_width}x{self.frame_height}") # Main processing loop frame_error_count = 0 max_consecutive_errors = 10 while self._running and cap.isOpened(): try: ret, frame = cap.read() # Add critical frame debugging print(f"🟡 Frame read attempt: ret={ret}, frame={None if frame is None else frame.shape}") if not ret or frame is None: frame_error_count += 1 print(f"âš ī¸ Frame read error ({frame_error_count}/{max_consecutive_errors})") if frame_error_count >= max_consecutive_errors: print("❌ Too many consecutive frame errors, stopping video thread") break # Skip this iteration and try again time.sleep(0.1) # Wait a bit before trying again continue # Reset the error counter if we successfully got a frame frame_error_count = 0 except Exception as e: print(f"❌ Critical error reading frame: {e}") frame_error_count += 1 if frame_error_count >= max_consecutive_errors: print("❌ Too many errors, stopping video thread") break continue # Detection and violation processing process_start = time.time() # Process detections detection_start = time.time() detections = [] if self.model_manager: detections = self.model_manager.detect(frame) # Normalize class names for consistency and check for traffic lights traffic_light_indices = [] for i, det in enumerate(detections): if 'class_name' in det: original_name = det['class_name'] normalized_name = normalize_class_name(original_name) # Keep track of traffic light indices if normalized_name == 'traffic light' or original_name == 'traffic light': traffic_light_indices.append(i) if original_name != normalized_name: print(f"📊 Normalized class name: '{original_name}' -> '{normalized_name}'") det['class_name'] = normalized_name # Ensure we have at least one traffic light for debugging if not traffic_light_indices and self.source_type == 'video': print("âš ī¸ No traffic lights detected, checking for objects that might be traffic lights...") # Try lowering the confidence threshold specifically for traffic lights # This is only for debugging purposes if self.model_manager and hasattr(self.model_manager, 'detect'): try: low_conf_detections = self.model_manager.detect(frame, conf_threshold=0.2) for det in low_conf_detections: if 'class_name' in det and det['class_name'] == 'traffic light': if det not in detections: print(f"đŸšĻ Found low confidence traffic light: {det['confidence']:.2f}") detections.append(det) except: pass detection_time = (time.time() - detection_start) * 1000 # Violation detection is disabled violation_start = time.time() violations = [] # if self.model_manager and detections: # violations = self.model_manager.detect_violations( # detections, frame, time.time() # ) violation_time = (time.time() - violation_start) * 1000 # Update tracking if available if self.model_manager: detections = self.model_manager.update_tracking(detections, frame) # If detections are returned as tuples, convert to dicts for downstream code if detections and isinstance(detections[0], tuple): # Convert (id, bbox, conf, class_id) to dict detections = [ {'id': d[0], 'bbox': d[1], 'confidence': d[2], 'class_id': d[3]} for d in detections ] # Calculate timing metrics process_time = (time.time() - process_start) * 1000 self.processing_times.append(process_time) # Update FPS now = time.time() self.frame_count += 1 elapsed = now - self.start_time if elapsed > 0: self.actual_fps = self.frame_count / elapsed fps_smoothed = 1.0 / (now - prev_time) if now > prev_time else 0 prev_time = now # Update metrics self.performance_metrics = { 'FPS': f"{fps_smoothed:.1f}", 'Detection (ms)': f"{detection_time:.1f}", 'Total (ms)': f"{process_time:.1f}" } # Store current frame data (thread-safe) self.mutex.lock() self.current_frame = frame.copy() self.current_detections = detections self.mutex.unlock() # Process frame with annotations before sending to UI annotated_frame = frame.copy() # Draw detections with bounding boxes for visual feedback if detections and len(detections) > 0: print(f"Drawing {len(detections)} detection boxes on frame") for det in detections: if 'bbox' in det: bbox = det['bbox'] print(f"[DETECTION DEBUG] bbox={bbox}, type={type(bbox)}, len={len(bbox) if bbox is not None else 'None'}") if bbox is None or len(bbox) != 4: continue x1, y1, x2, y2 = map(int, bbox) label = det.get('class_name', 'object') confidence = det.get('confidence', 0.0) # Robustness: ensure label and confidence are not None if label is None: label = 'object' if confidence is None: confidence = 0.0 class_id = det.get('class_id', -1) # Use red color if id==9 or is traffic light, else green if class_id == 9 or is_traffic_light(label): box_color = (0, 0, 255) # Red in BGR else: box_color = (0, 255, 0) # Green in BGR if 'id' in det: id_text = f"ID: {det['id']}" # Draw rectangle and label cv2.rectangle(annotated_frame, (x1, y1), (x2, y2), box_color, 2) cv2.putText(annotated_frame, f"{id_text} {label} ", (x1, y1-10), cv2.FONT_HERSHEY_SIMPLEX, 0.5, box_color, 2) # Draw vehicle ID if present # if 'id' in det: # id_text = f"ID: {det['id']}" # # Calculate text size for background # (tw, th), baseline = cv2.getTextSize(id_text, cv2.FONT_HERSHEY_SIMPLEX, 0.8, 2) # # Draw filled rectangle for background (top-left of bbox) # cv2.rectangle(annotated_frame, (x1, y1 - th - 8), (x1 + tw + 4, y1), (0, 0, 0), -1) # # Draw the ID text in bold yellow # cv2.putText(annotated_frame, id_text, (x1 + 2, y1 - 4), cv2.FONT_HERSHEY_SIMPLEX, 0.8, (0, 255, 255), 2, cv2.LINE_AA) # print(f"[DEBUG] Detection ID: {det['id']} BBOX: {bbox} CLASS: {label} CONF: {confidence:.2f}") if class_id == 9 or is_traffic_light(label): try: light_info = detect_traffic_light_color(annotated_frame, [x1, y1, x2, y2]) if light_info.get("color", "unknown") == "unknown": light_info = ensure_traffic_light_color(annotated_frame, [x1, y1, x2, y2]) det['traffic_light_color'] = light_info annotated_frame = draw_traffic_light_status(annotated_frame, bbox, light_info) # --- Update latest_traffic_light for UI/console --- self.latest_traffic_light = light_info except Exception as e: print(f"[WARN] Could not detect/draw traffic light color: {e}") # Add FPS display directly on frame # cv2.putText(annotated_frame, f"FPS: {fps_smoothed:.1f}", (10, 30), # cv2.FONT_HERSHEY_SIMPLEX, 1, (255, 255, 255), 2) # # --- Always draw detected traffic light color indicator at top --- # color = self.latest_traffic_light.get('color', 'unknown') if isinstance(self.latest_traffic_light, dict) else str(self.latest_traffic_light) # confidence = self.latest_traffic_light.get('confidence', 0.0) if isinstance(self.latest_traffic_light, dict) else 0.0 # indicator_size = 30 # margin = 10 # status_colors = { # "red": (0, 0, 255), # "yellow": (0, 255, 255), # "green": (0, 255, 0), # "unknown": (200, 200, 200) # } # draw_color = status_colors.get(color, (200, 200, 200)) # # Draw circle indicator # cv2.circle( # annotated_frame, # (annotated_frame.shape[1] - margin - indicator_size, margin + indicator_size), # indicator_size, # draw_color, # -1 # ) # # Add color text # cv2.putText( # annotated_frame, # f"{color.upper()} ({confidence:.2f})", # (annotated_frame.shape[1] - margin - indicator_size - 120, margin + indicator_size + 10), # cv2.FONT_HERSHEY_SIMPLEX, # 0.7, # (0, 0, 0), # 2 # ) # Signal for raw data subscribers (now without violations) # Emit with correct number of arguments try: self.raw_frame_ready.emit(frame.copy(), detections, fps_smoothed) print(f"✅ raw_frame_ready signal emitted with {len(detections)} detections, fps={fps_smoothed:.1f}") except Exception as e: print(f"❌ Error emitting raw_frame_ready: {e}") import traceback traceback.print_exc()# Emit the NumPy frame signal for direct display - annotated version for visual feedback print(f"🔴 Emitting frame_np_ready signal with annotated_frame shape: {annotated_frame.shape}") try: # Make sure the frame can be safely transmitted over Qt's signal system # Create a contiguous copy of the array frame_copy = np.ascontiguousarray(annotated_frame) print(f"🔍 Debug - Before emission: frame_copy type={type(frame_copy)}, shape={frame_copy.shape}, is_contiguous={frame_copy.flags['C_CONTIGUOUS']}") self.frame_np_ready.emit(frame_copy) print("✅ frame_np_ready signal emitted successfully") except Exception as e: print(f"❌ Error emitting frame: {e}") import traceback traceback.print_exc() # Emit stats signal for performance monitoring stats = { 'fps': fps_smoothed, 'detection_fps': fps_smoothed, # Numeric value for analytics 'detection_time': detection_time, 'detection_time_ms': detection_time, # Numeric value for analytics 'traffic_light_color': self.latest_traffic_light } # Print detailed stats for debugging tl_color = "unknown" if isinstance(self.latest_traffic_light, dict): tl_color = self.latest_traffic_light.get('color', 'unknown') elif isinstance(self.latest_traffic_light, str): tl_color = self.latest_traffic_light print(f"đŸŸĸ Stats Updated: FPS={fps_smoothed:.2f}, Inference={detection_time:.2f}ms, Traffic Light={tl_color}") # Emit stats signal self.stats_ready.emit(stats) # Control processing rate for file sources if isinstance(self.source, str) and self.source_fps > 0: frame_duration = time.time() - process_start if frame_duration < frame_time: time.sleep(frame_time - frame_duration) cap.release() except Exception as e: print(f"Video processing error: {e}") import traceback traceback.print_exc() finally: self._running = False def _process_frame(self): print("\033[94m[FIX] _process_frame called for new frame\033[0m") try: self.mutex.lock() if self.current_frame is None: print("âš ī¸ No frame available to process") self.mutex.unlock() # Check if we're running - if not, this is expected behavior if not self._running: return # If we are running but have no frame, create a blank frame with error message h, w = 480, 640 # Default size blank_frame = np.zeros((h, w, 3), dtype=np.uint8) cv2.putText(blank_frame, "No video input", (w//2-100, h//2), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 0, 255), 2) # Emit this blank frame try: self.frame_np_ready.emit(blank_frame) except Exception as e: print(f"Error emitting blank frame: {e}") return try: frame = self.current_frame.copy() detections = self.current_detections.copy() if self.current_detections else [] metrics = self.performance_metrics.copy() except Exception as e: print(f"Error copying frame data: {e}") self.mutex.unlock() return self.mutex.unlock() except Exception as e: print(f"Critical error in _process_frame initialization: {e}") import traceback traceback.print_exc() try: self.mutex.unlock() except: pass return try: annotated_frame = frame.copy() # Draw detections for det in detections: if 'bbox' in det: bbox = det['bbox'] if bbox is None or len(bbox) != 4: continue x1, y1, x2, y2 = map(int, bbox) label = det.get('class_name', 'object') confidence = det.get('confidence', 0.0) class_id = det.get('class_id', -1) if class_id == 9 or is_traffic_light(label): box_color = (0, 0, 255) else: box_color = (0, 255, 0) cv2.rectangle(annotated_frame, (x1, y1), (x2, y2), box_color, 2) cv2.putText(annotated_frame, f"{label} {confidence:.2f}", (x1, y1-10), cv2.FONT_HERSHEY_SIMPLEX, 0.5, box_color, 2) if 'id' in det: id_text = f"ID: {det['id']}" (tw, th), baseline = cv2.getTextSize(id_text, cv2.FONT_HERSHEY_SIMPLEX, 0.8, 2) cv2.rectangle(annotated_frame, (x1, y1 - th - 8), (x1 + tw + 4, y1), (0, 0, 0), -1) cv2.putText(annotated_frame, id_text, (x1 + 2, y1 - 4), cv2.FONT_HERSHEY_SIMPLEX, 0.8, (0, 255, 255), 2, cv2.LINE_AA) # Find traffic light bbox traffic_light_bbox = None for det in detections: if is_traffic_light(det.get('class_name')) and 'bbox' in det: traffic_light_bbox = det['bbox'] break # --- Violation detection and overlay --- print(f"[DEBUG] Calling process_frame with frame_idx={self.frame_idx}, detections={len(detections)}, traffic_light_bbox={traffic_light_bbox}") # --- Get traffic light color info --- traffic_light_info = self.latest_traffic_light if hasattr(self, 'latest_traffic_light') else {"color": "unknown", "confidence": 0.0} # --- Get violation line y from crosswalk detection --- try: # Call crosswalk detection to get current violation line crosswalk_bbox, violation_line_coords, crosswalk_info = self.detect_crosswalk_and_violation_line(frame, traffic_light_bbox) if violation_line_coords and len(violation_line_coords) >= 2: # Extract y-coordinate from violation line coordinates violation_line_y = int(violation_line_coords[1]) # y-coordinate of start point self.last_violation_line_y = violation_line_y # Update cached value else: violation_line_y = self.last_violation_line_y if hasattr(self, 'last_violation_line_y') else None except Exception as e: print(f"[WARN] Crosswalk detection error in _process_frame: {e}") violation_line_y = self.last_violation_line_y if hasattr(self, 'last_violation_line_y') else None # --- Call violation detection logic --- try: annotated_with_viol, violators, _ = self.detect_red_light_violations( frame=frame, vehicle_detections=detections, traffic_light_color_info=traffic_light_info, violation_line_y=violation_line_y, frame_number=self.frame_idx, state_cache=getattr(self, '_violation_state_cache', None) ) self._violation_state_cache = _ # persist state print(f"[VIOLATION DEBUG] Frame {self.frame_idx}: {len(violators)} violations detected.") for v in violators: print(f"[VIOLATION DEBUG] Violation: {v}") except Exception as e: print("\033[91m[ERROR] Exception in violation detection!\033[0m") traceback.print_exc() annotated_with_viol = annotated_frame violators = [] self.frame_idx += 1 # Draw overlays annotated_with_viol = draw_performance_overlay(annotated_with_viol, metrics) cv2.circle(annotated_with_viol, (20, 20), 10, (255, 255, 0), -1) frame_rgb = cv2.cvtColor(annotated_with_viol, cv2.COLOR_BGR2RGB) try: self.frame_np_ready.emit(frame_rgb) vehicle_detections = detections self.frame_np_with_violations.emit(annotated_with_viol, vehicle_detections, violators) except Exception as e: print(f"Error emitting processed frame: {e}") except Exception as e: print(f"Error in _process_frame: {e}") import traceback traceback.print_exc() def detect_red_light_violations(self, frame, vehicle_detections, traffic_light_color_info, violation_line_y, frame_number, state_cache=None): """ Robust red light violation detection logic with detailed debug for every vehicle, matching video_controller_finale.py. """ debug = True try: if state_cache is None: state_cache = {} if 'red_count' not in state_cache: state_cache['red_count'] = 0 if 'last_color' not in state_cache: state_cache['last_color'] = None if 'vehicle_states' not in state_cache: state_cache['vehicle_states'] = {} if 'cooldown' not in state_cache: state_cache['cooldown'] = {} color = traffic_light_color_info.get('color', 'unknown') conf = traffic_light_color_info.get('confidence', 0.0) # Debounce: require 3 consecutive red frames if color == 'red' and conf >= 0.3: if state_cache['last_color'] == 'red': state_cache['red_count'] += 1 else: state_cache['red_count'] = 1 else: state_cache['red_count'] = 0 state_cache['last_color'] = color red_consistent = state_cache['red_count'] >= 3 annotated = frame.copy() h, w = frame.shape[:2] # Draw violation line if available if violation_line_y is not None: cv2.line(annotated, (0, violation_line_y), (w, violation_line_y), (0,0,255), 5) cv2.putText(annotated, "VIOLATION LINE", (10, violation_line_y-10), cv2.FONT_HERSHEY_SIMPLEX, 0.8, (0,0,255), 2) # Draw red light indicator (no emoji) if color == 'red' and conf >= 0.3: cv2.putText(annotated, "RED LIGHT", (10, 40), cv2.FONT_HERSHEY_SIMPLEX, 1.2, (0,0,255), 4) violators = [] for det in vehicle_detections: # Fallback for missing vehicle ID vid = det.get('id') if vid is None: # Use bbox as fallback ID (tuple) vid = tuple(det.get('bbox', [])) bbox = det.get('bbox') if bbox is None or len(bbox) != 4: if debug: print(f"[VIOLATION DEBUG] Skipping vehicle with invalid bbox: {bbox}") continue x1, y1, x2, y2 = map(int, bbox) cx = (x1 + x2) // 2 bottom_y = max(y1, y2) # Ignore vehicles outside central 80% of frame width if not (0.1 * w < cx < 0.9 * w): continue # Per-vehicle state vstate = state_cache['vehicle_states'].setdefault(vid, {'was_behind': True, 'last_crossed': -100, 'entry_time': None, 'dwell': 0}) cooldown = state_cache['cooldown'].get(vid, 0) # Print all state info for this vehicle print(f"[VIOLATION DEBUG] Vehicle {vid}: bbox={bbox}, cx={cx}, bottom_y={bottom_y}, vstate={vstate}, cooldown={cooldown}, violation_line_y={violation_line_y}, red_consistent={red_consistent}") if cooldown > 0: state_cache['cooldown'][vid] -= 1 print(f"[VIOLATION DEBUG] Vehicle {vid} in cooldown: {state_cache['cooldown'][vid]} frames left") continue if violation_line_y is not None and bottom_y < violation_line_y: if not vstate['was_behind']: print(f"[VIOLATION DEBUG] Vehicle {vid} moved behind the line at frame {frame_number}") vstate['was_behind'] = True if vstate['entry_time'] is None: vstate['entry_time'] = frame_number vstate['dwell'] = 0 elif violation_line_y is not None and vstate['was_behind'] and red_consistent and bottom_y >= violation_line_y: # Violation detected violators.append({ 'id': vid, 'bbox': bbox, 'frame': frame_number, 'violation_type': 'red_light', 'violation_line_y': violation_line_y }) vstate['was_behind'] = False vstate['last_crossed'] = frame_number state_cache['cooldown'][vid] = 30 print(f"[VIOLATION] Vehicle {vid} crossed at frame {frame_number} during RED! bbox={bbox}") else: print(f"[VIOLATION DEBUG] Vehicle {vid} not violating: was_behind={vstate['was_behind']}, red_consistent={red_consistent}, bottom_y={bottom_y}, violation_line_y={violation_line_y}") return annotated, violators, state_cache except Exception as e: print(f"[ERROR] Exception in detect_red_light_violations: {e}") import traceback traceback.print_exc() return frame, [], state_cache ###nott working but violation debug chal rhe from PySide6.QtCore import QObject, Signal, QThread, Qt, QMutex, QWaitCondition, QTimer from PySide6.QtGui import QImage, QPixmap import cv2 import time import numpy as np from collections import deque from typing import Dict, List, Optional import os import sys import math import datetime import traceback # Add parent directory to path for imports sys.path.append(os.path.dirname(os.path.dirname(os.path.abspath(__file__)))) # Import utilities from utils.annotation_utils import ( draw_detections, draw_performance_metrics, resize_frame_for_display, convert_cv_to_qimage, convert_cv_to_pixmap ) # Import enhanced annotation utilities from utils.enhanced_annotation_utils import ( enhanced_draw_detections, draw_performance_overlay, enhanced_cv_to_qimage, enhanced_cv_to_pixmap, ) # Import traffic light color detection utilities from utils.traffic_light_utils import detect_traffic_light_color, draw_traffic_light_status, ensure_traffic_light_color from controllers.deepsort_tracker import DeepSortVehicleTracker TRAFFIC_LIGHT_CLASSES = ["traffic light", "trafficlight", "tl"] TRAFFIC_LIGHT_NAMES = ['trafficlight', 'traffic light', 'tl', 'signal'] def normalize_class_name(class_name): """Normalizes class names from different models/formats to a standard name""" if not class_name: return "" name_lower = class_name.lower() # Traffic light variants if name_lower in ['traffic light', 'trafficlight', 'traffic_light', 'tl', 'signal']: return 'traffic light' # Keep specific vehicle classes (car, truck, bus) separate # Just normalize naming variations within each class if name_lower in ['car', 'auto', 'automobile']: return 'car' elif name_lower in ['truck']: return 'truck' elif name_lower in ['bus']: return 'bus' elif name_lower in ['motorcycle', 'scooter', 'motorbike', 'bike']: return 'motorcycle' # Person variants if name_lower in ['person', 'pedestrian', 'human']: return 'person' # Other common classes can be added here return class_name def is_traffic_light(class_name): """Helper function to check if a class name is a traffic light with normalization""" if not class_name: return False normalized = normalize_class_name(class_name) return normalized == 'traffic light' class VideoWorker(QObject): """Worker class to handle video processing in a separate thread""" frame_processed = Signal(np.ndarray, list) # frame, detections def __init__(self, controller): super().__init__() self.controller = controller def run_video_processing(self): """Run video processing in worker thread""" if hasattr(self.controller, '_run'): self.controller._run() class VideoController(QObject): frame_ready = Signal(object, object, dict) # QPixmap, detections, metrics raw_frame_ready = Signal(np.ndarray, list, float) # frame, detections, fps frame_np_ready = Signal(np.ndarray) # Direct NumPy frame signal for display frame_np_with_violations = Signal(np.ndarray, list, list) # frame, detections, violators stats_ready = Signal(dict) # Dictionary with stats (fps, detection_time, traffic_light) violation_detected = Signal(dict) # Signal emitted when a violation is detected def __init__(self, model_manager=None): """ Initialize video controller. Args: model_manager: Model manager instance for detection and violation """ super().__init__() self._running = False self.source = None self.source_type = None self.source_fps = 0 self.performance_metrics = {} self.mutex = QMutex() # Performance tracking self.processing_times = deque(maxlen=100) # Store last 100 processing times self.fps_history = deque(maxlen=100) # Store last 100 FPS values self.start_time = time.time() self.frame_count = 0 self.actual_fps = 0.0 self.model_manager = model_manager self.inference_model = None self.tracker = None self.current_frame = None self.current_detections = [] # Traffic light state tracking self.latest_traffic_light = {"color": "unknown", "confidence": 0.0} # Set up violation detection try: from controllers.red_light_violation_detector import RedLightViolationDetector self.violation_detector = RedLightViolationDetector() print("✅ Red light violation detector initialized") except Exception as e: self.violation_detector = None print(f"❌ Could not initialize violation detector: {e}") # Import crosswalk detection try: from utils.crosswalk_utils2 import detect_crosswalk_and_violation_line, draw_violation_line self.detect_crosswalk_and_violation_line = detect_crosswalk_and_violation_line self.draw_violation_line = draw_violation_line print("✅ Crosswalk detection utilities imported") except Exception as e: print(f"❌ Could not import crosswalk detection: {e}") self.detect_crosswalk_and_violation_line = lambda frame, *args: (None, None, {}) self.draw_violation_line = lambda frame, *args, **kwargs: frame # Configure thread with worker self.thread = QThread() self.worker = VideoWorker(self) self.worker.moveToThread(self.thread) self.thread.started.connect(self.worker.run_video_processing) # Performance measurement self.condition = QWaitCondition() # Setup render timer with more aggressive settings for UI updates # Timer stays in main thread for proper signal handling self.render_timer = QTimer() self.render_timer.timeout.connect(self._process_frame) # Frame buffer self.current_violations = [] # Debug counter for monitoring frame processing self.debug_counter = 0 # Initialize the traffic light color detection pipeline # self.cv_violation_pipeline = RedLightViolationPipeline(debug=True) # Initialize vehicle tracker self.vehicle_tracker = DeepSortVehicleTracker() # Add red light violation system with tracker # self.red_light_violation_system = RedLightViolationSystem( # vehicle_tracker=self.vehicle_tracker, # config={ # 'min_confidence': 0.5, # 'min_violation_frames': 5 # } # ) self.last_violation_line_y = None # For overlay self.violation_states = {} # For violation state machine self.frame_idx = 0 # Initialize frame index for violation tracking def set_source(self, source): """ Set video source (file path, camera index, or URL) Args: source: Video source - can be a camera index (int), file path (str), or URL (str). If None, defaults to camera 0. Returns: bool: True if source was set successfully, False otherwise """ print(f"đŸŽŦ VideoController.set_source called with: {source} (type: {type(source)})") # Store current state was_running = self._running # Stop current processing if running if self._running: print("âšī¸ Stopping current video processing") self.stop() try: # Handle source based on type with better error messages if source is None: print("âš ī¸ Received None source, defaulting to camera 0") self.source = 0 self.source_type = "camera" elif isinstance(source, str) and source.strip(): if os.path.exists(source): # Valid file path self.source = source self.source_type = "file" print(f"📄 Source set to file: {self.source}") elif source.lower().startswith(("http://", "https://", "rtsp://", "rtmp://")): # URL stream self.source = source self.source_type = "url" print(f"🌐 Source set to URL stream: {self.source}") elif source.isdigit(): # String camera index (convert to int) self.source = int(source) self.source_type = "camera" print(f"📹 Source set to camera index: {self.source}") else: # Try as device path or special string self.source = source self.source_type = "device" print(f"📱 Source set to device path: {self.source}") elif isinstance(source, int): # Camera index self.source = source self.source_type = "camera" print(f"📹 Source set to camera index: {self.source}") else: # Unrecognized - default to camera 0 with warning print(f"âš ī¸ Unrecognized source type: {type(source)}, defaulting to camera 0") self.source = 0 self.source_type = "camera" except Exception as e: print(f"❌ Error setting source: {e}") self.source = 0 self.source_type = "camera" return False # Get properties of the source (fps, dimensions, etc) print(f"🔍 Getting properties for source: {self.source}") success = self._get_source_properties() if success: print(f"✅ Successfully configured source: {self.source} ({self.source_type})") # Emit successful source change self.stats_ready.emit({ 'source_changed': True, 'source_type': self.source_type, 'fps': self.source_fps if hasattr(self, 'source_fps') else 0, 'dimensions': f"{self.frame_width}x{self.frame_height}" if hasattr(self, 'frame_width') else "unknown" }) # Restart if previously running if was_running: print("â–ļī¸ Restarting video processing with new source") self.start() else: print(f"❌ Failed to configure source: {self.source}") # Notify UI about the error self.stats_ready.emit({ 'source_changed': False, 'error': f"Invalid video source: {self.source}", 'source_type': self.source_type, 'fps': 0, 'detection_time_ms': "0", 'traffic_light_color': {"color": "unknown", "confidence": 0.0} }) return False # Return success status return success def _get_source_properties(self): """ Get properties of video source Returns: bool: True if source was successfully opened, False otherwise """ try: print(f"🔍 Opening video source for properties check: {self.source}") cap = cv2.VideoCapture(self.source) # Verify capture opened successfully if not cap.isOpened(): print(f"❌ Failed to open video source: {self.source}") return False # Read properties self.source_fps = cap.get(cv2.CAP_PROP_FPS) if self.source_fps <= 0: print("âš ī¸ Source FPS not available, using default 30 FPS") self.source_fps = 30.0 # Default if undetectable self.frame_width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH)) self.frame_height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT)) self.frame_count = int(cap.get(cv2.CAP_PROP_FRAME_COUNT)) # Try reading a test frame to confirm source is truly working ret, test_frame = cap.read() if not ret or test_frame is None: print("âš ī¸ Could not read test frame from source") # For camera sources, try one more time with delay if self.source_type == "camera": print("🔄 Retrying camera initialization...") time.sleep(1.0) # Wait a moment for camera to initialize ret, test_frame = cap.read() if not ret or test_frame is None: print("❌ Camera initialization failed after retry") cap.release() return False else: print("❌ Could not read frames from video source") cap.release() return False # Release the capture cap.release() print(f"✅ Video source properties: {self.frame_width}x{self.frame_height}, {self.source_fps} FPS") return True except Exception as e: print(f"❌ Error getting source properties: {e}") return False def start(self): """Start video processing""" if not self._running: self._running = True self.start_time = time.time() self.frame_count = 0 self.debug_counter = 0 print("DEBUG: Starting video processing thread") # Start the processing thread - add more detailed debugging if not self.thread.isRunning(): print("🚀 Thread not running, starting now...") try: self.thread.start() print("✅ Thread started successfully") print(f"🔄 Thread state: running={self.thread.isRunning()}, finished={self.thread.isFinished()}") except Exception as e: print(f"❌ Failed to start thread: {e}") import traceback traceback.print_exc() else: print("âš ī¸ Thread is already running!") print(f"🔄 Thread state: running={self.thread.isRunning()}, finished={self.thread.isFinished()}") # Optional: Start the render timer as backup (reduced frequency since main processing handles most) print("âąī¸ Starting backup render timer...") print(f"🔍 Timer parent thread: {self.render_timer.thread()}") print(f"🔍 Controller thread: {self.thread()}") self.render_timer.start(100) # 10Hz backup timer print("✅ Backup render timer started at 10Hz") print(f"🔄 Render timer active: {self.render_timer.isActive()}, interval: {self.render_timer.interval()}ms") def stop(self): """Stop video processing""" if self._running: print("DEBUG: Stopping video processing") self._running = False self.render_timer.stop() # Properly terminate the thread self.thread.quit() if not self.thread.wait(3000): # Wait 3 seconds max self.thread.terminate() print("WARNING: Thread termination forced") # Clear the current frame self.mutex.lock() self.current_frame = None self.mutex.unlock() print("DEBUG: Video processing stopped") def capture_snapshot(self) -> np.ndarray: """Capture current frame""" if self.current_frame is not None: return self.current_frame.copy() return None def _run(self): """Main processing loop (runs in thread)""" try: # Print the source we're trying to open print(f"DEBUG: Opening video source: {self.source} (type: {type(self.source)})") cap = None # Initialize capture variable # Try to open source with more robust error handling max_retries = 3 retry_delay = 1.0 # seconds # Function to attempt opening the source with multiple retries def try_open_source(src, retries=max_retries, delay=retry_delay): for attempt in range(1, retries + 1): print(f"đŸŽĨ Opening source (attempt {attempt}/{retries}): {src}") try: capture = cv2.VideoCapture(src) if capture.isOpened(): # Try to read a test frame to confirm it's working ret, test_frame = capture.read() if ret and test_frame is not None: print(f"✅ Source opened successfully: {src}") # Reset capture position for file sources if isinstance(src, str) and os.path.exists(src): capture.set(cv2.CAP_PROP_POS_FRAMES, 0) return capture else: print(f"âš ī¸ Source opened but couldn't read frame: {src}") capture.release() else: print(f"âš ī¸ Failed to open source: {src}") # Retry after delay if attempt < retries: print(f"Retrying in {delay:.1f} seconds...") time.sleep(delay) except Exception as e: print(f"❌ Error opening source {src}: {e}") if attempt < retries: print(f"Retrying in {delay:.1f} seconds...") time.sleep(delay) print(f"❌ Failed to open source after {retries} attempts: {src}") return None # Handle different source types if isinstance(self.source, str) and os.path.exists(self.source): # It's a valid file path print(f"📄 Opening video file: {self.source}") cap = try_open_source(self.source) elif isinstance(self.source, int) or (isinstance(self.source, str) and self.source.isdigit()): # It's a camera index camera_idx = int(self.source) if isinstance(self.source, str) else self.source print(f"📹 Opening camera with index: {camera_idx}") # For cameras, try with different backend options if it fails cap = try_open_source(camera_idx) # If failed, try with DirectShow backend on Windows if cap is None and os.name == 'nt': print("🔄 Trying camera with DirectShow backend...") cap = try_open_source(camera_idx + cv2.CAP_DSHOW) else: # Try as a string source (URL or device path) print(f"🌐 Opening source as string: {self.source}") cap = try_open_source(str(self.source)) # Check if we successfully opened the source if cap is None: print(f"❌ Failed to open video source after all attempts: {self.source}") # Notify UI about the error self.stats_ready.emit({ 'error': f"Could not open video source: {self.source}", 'fps': "0", 'detection_time_ms': "0", 'traffic_light_color': {"color": "unknown", "confidence": 0.0} }) return # Check again to ensure capture is valid if not cap or not cap.isOpened(): print(f"ERROR: Could not open video source {self.source}") # Emit a signal to notify UI about the error self.stats_ready.emit({ 'error': f"Failed to open video source: {self.source}", 'fps': "0", 'detection_time_ms': "0", 'traffic_light_color': {"color": "unknown", "confidence": 0.0} }) return # Configure frame timing based on source FPS frame_time = 1.0 / self.source_fps if self.source_fps > 0 else 0.033 prev_time = time.time() # Log successful opening print(f"SUCCESS: Video source opened: {self.source}") print(f"Source info - FPS: {self.source_fps}, Size: {self.frame_width}x{self.frame_height}") # Main processing loop frame_error_count = 0 max_consecutive_errors = 10 while self._running and cap.isOpened(): try: ret, frame = cap.read() # Add critical frame debugging print(f"🟡 Frame read attempt: ret={ret}, frame={None if frame is None else frame.shape}") if not ret or frame is None: frame_error_count += 1 print(f"âš ī¸ Frame read error ({frame_error_count}/{max_consecutive_errors})") if frame_error_count >= max_consecutive_errors: print("❌ Too many consecutive frame errors, stopping video thread") break # Skip this iteration and try again time.sleep(0.1) # Wait a bit before trying again continue # Reset the error counter if we successfully got a frame frame_error_count = 0 except Exception as e: print(f"❌ Critical error reading frame: {e}") frame_error_count += 1 if frame_error_count >= max_consecutive_errors: print("❌ Too many errors, stopping video thread") break continue # Detection and violation processing process_start = time.time() # Process detections detection_start = time.time() detections = [] if self.model_manager: detections = self.model_manager.detect(frame) # Normalize class names for consistency and check for traffic lights traffic_light_indices = [] for i, det in enumerate(detections): if 'class_name' in det: original_name = det['class_name'] normalized_name = normalize_class_name(original_name) # Keep track of traffic light indices if normalized_name == 'traffic light' or original_name == 'traffic light': traffic_light_indices.append(i) if original_name != normalized_name: print(f"📊 Normalized class name: '{original_name}' -> '{normalized_name}'") det['class_name'] = normalized_name # Ensure we have at least one traffic light for debugging if not traffic_light_indices and self.source_type == 'video': print("âš ī¸ No traffic lights detected, checking for objects that might be traffic lights...") # Try lowering the confidence threshold specifically for traffic lights # This is only for debugging purposes if self.model_manager and hasattr(self.model_manager, 'detect'): try: low_conf_detections = self.model_manager.detect(frame, conf_threshold=0.2) for det in low_conf_detections: if 'class_name' in det and det['class_name'] == 'traffic light': if det not in detections: print(f"đŸšĻ Found low confidence traffic light: {det['confidence']:.2f}") detections.append(det) except: pass detection_time = (time.time() - detection_start) * 1000 # Violation detection is disabled violation_start = time.time() violations = [] # if self.model_manager and detections: # violations = self.model_manager.detect_violations( # detections, frame, time.time() # ) violation_time = (time.time() - violation_start) * 1000 # Update tracking if available if self.model_manager: detections = self.model_manager.update_tracking(detections, frame) # If detections are returned as tuples, convert to dicts for downstream code if detections and isinstance(detections[0], tuple): # Convert (id, bbox, conf, class_id) to dict detections = [ {'id': d[0], 'bbox': d[1], 'confidence': d[2], 'class_id': d[3]} for d in detections ] # Calculate timing metrics process_time = (time.time() - process_start) * 1000 self.processing_times.append(process_time) # Update FPS now = time.time() self.frame_count += 1 elapsed = now - self.start_time if elapsed > 0: self.actual_fps = self.frame_count / elapsed fps_smoothed = 1.0 / (now - prev_time) if now > prev_time else 0 prev_time = now # Update metrics self.performance_metrics = { 'FPS': f"{fps_smoothed:.1f}", 'Detection (ms)': f"{detection_time:.1f}", 'Total (ms)': f"{process_time:.1f}" } # Store current frame data (thread-safe) self.mutex.lock() self.current_frame = frame.copy() self.current_detections = detections self.mutex.unlock() # Process frame with annotations before sending to UI annotated_frame = frame.copy() # Draw detections with bounding boxes for visual feedback if detections and len(detections) > 0: print(f"Drawing {len(detections)} detection boxes on frame") for det in detections: if 'bbox' in det: bbox = det['bbox'] print(f"[DETECTION DEBUG] bbox={bbox}, type={type(bbox)}, len={len(bbox) if bbox is not None else 'None'}") if bbox is None or len(bbox) != 4: continue x1, y1, x2, y2 = map(int, bbox) label = det.get('class_name', 'object') confidence = det.get('confidence', 0.0) # Robustness: ensure label and confidence are not None if label is None: label = 'object' if confidence is None: confidence = 0.0 class_id = det.get('class_id', -1) # Use red color if id==9 or is traffic light, else green if class_id == 9 or is_traffic_light(label): box_color = (0, 0, 255) # Red in BGR else: box_color = (0, 255, 0) # Green in BGR # Draw rectangle and label cv2.rectangle(annotated_frame, (x1, y1), (x2, y2), box_color, 2) # Handle vehicle ID display if 'id' in det: id_text = f"ID: {det['id']}" cv2.putText(annotated_frame, f"{id_text} {label} ", (x1, y1-10), cv2.FONT_HERSHEY_SIMPLEX, 0.5, box_color, 2) # Draw vehicle ID if present # if 'id' in det: # id_text = f"ID: {det['id']}" # # Calculate text size for background # (tw, th), baseline = cv2.getTextSize(id_text, cv2.FONT_HERSHEY_SIMPLEX, 0.8, 2) # # Draw filled rectangle for background (top-left of bbox) # cv2.rectangle(annotated_frame, (x1, y1 - th - 8), (x1 + tw + 4, y1), (0, 0, 0), -1) # # Draw the ID text in bold yellow # cv2.putText(annotated_frame, id_text, (x1 + 2, y1 - 4), cv2.FONT_HERSHEY_SIMPLEX, 0.8, (0, 255, 255), 2, cv2.LINE_AA) # print(f"[DEBUG] Detection ID: {det['id']} BBOX: {bbox} CLASS: {label} CONF: {confidence:.2f}") if class_id == 9 or is_traffic_light(label): try: light_info = detect_traffic_light_color(annotated_frame, [x1, y1, x2, y2]) if light_info.get("color", "unknown") == "unknown": light_info = ensure_traffic_light_color(annotated_frame, [x1, y1, x2, y2]) det['traffic_light_color'] = light_info annotated_frame = draw_traffic_light_status(annotated_frame, bbox, light_info) # --- Update latest_traffic_light for UI/console --- self.latest_traffic_light = light_info except Exception as e: print(f"[WARN] Could not detect/draw traffic light color: {e}") # Add FPS display directly on frame # cv2.putText(annotated_frame, f"FPS: {fps_smoothed:.1f}", (10, 30), # cv2.FONT_HERSHEY_SIMPLEX, 1, (255, 255, 255), 2) # # --- Always draw detected traffic light color indicator at top --- # color = self.latest_traffic_light.get('color', 'unknown') if isinstance(self.latest_traffic_light, dict) else str(self.latest_traffic_light) # confidence = self.latest_traffic_light.get('confidence', 0.0) if isinstance(self.latest_traffic_light, dict) else 0.0 # indicator_size = 30 # margin = 10 # status_colors = { # "red": (0, 0, 255), # "yellow": (0, 255, 255), # "green": (0, 255, 0), # "unknown": (200, 200, 200) # } # draw_color = status_colors.get(color, (200, 200, 200)) # # Draw circle indicator # cv2.circle( # annotated_frame, # (annotated_frame.shape[1] - margin - indicator_size, margin + indicator_size), # indicator_size, # draw_color, # -1 # ) # # Add color text # cv2.putText( # annotated_frame, # f"{color.upper()} ({confidence:.2f})", # (annotated_frame.shape[1] - margin - indicator_size - 120, margin + indicator_size + 10), # cv2.FONT_HERSHEY_SIMPLEX, # 0.7, # (0, 0, 0), # 2 # ) # Signal for raw data subscribers (now without violations) # Emit with correct number of arguments try: self.raw_frame_ready.emit(frame.copy(), detections, fps_smoothed) print(f"✅ raw_frame_ready signal emitted with {len(detections)} detections, fps={fps_smoothed:.1f}") except Exception as e: print(f"❌ Error emitting raw_frame_ready: {e}") import traceback traceback.print_exc() # NOTE: Emit frame_np_ready with violation detection here # Instead of relying on _process_frame timer print(f"🔍 [CRITICAL DEBUG] About to enter violation detection block") print(f"🔍 [CRITICAL DEBUG] annotated_frame shape: {annotated_frame.shape}") print(f"🔍 [CRITICAL DEBUG] detections count: {len(detections)}") print(f"🔍 [CRITICAL DEBUG] original frame shape: {frame.shape}") try: print(f"🔍 About to call _add_violation_detection with {len(detections)} detections") # Process violations and annotations annotated_with_violations = self._add_violation_detection(annotated_frame, detections, frame) print(f"🔍 _add_violation_detection returned frame with shape: {annotated_with_violations.shape}") # Convert to RGB for Qt display frame_rgb = cv2.cvtColor(annotated_with_violations, cv2.COLOR_BGR2RGB) frame_copy = np.ascontiguousarray(frame_rgb) print(f"🔴 Emitting frame_np_ready signal with annotated_frame shape: {frame_copy.shape}") self.frame_np_ready.emit(frame_copy) print("✅ frame_np_ready signal emitted successfully") except Exception as e: print(f"❌ Error emitting frame: {e}") import traceback traceback.print_exc() # Emit stats signal for performance monitoring stats = { 'fps': fps_smoothed, 'detection_fps': fps_smoothed, # Numeric value for analytics 'detection_time': detection_time, 'detection_time_ms': detection_time, # Numeric value for analytics 'traffic_light_color': self.latest_traffic_light } # Print detailed stats for debugging tl_color = "unknown" if isinstance(self.latest_traffic_light, dict): tl_color = self.latest_traffic_light.get('color', 'unknown') elif isinstance(self.latest_traffic_light, str): tl_color = self.latest_traffic_light print(f"đŸŸĸ Stats Updated: FPS={fps_smoothed:.2f}, Inference={detection_time:.2f}ms, Traffic Light={tl_color}") # Emit stats signal self.stats_ready.emit(stats) # Control processing rate for file sources if isinstance(self.source, str) and self.source_fps > 0: frame_duration = time.time() - process_start if frame_duration < frame_time: time.sleep(frame_time - frame_duration) cap.release() except Exception as e: print(f"Video processing error: {e}") import traceback traceback.print_exc() finally: self._running = False def _process_frame(self): print("\033[94m[DEBUG] _process_frame called - timer triggered\033[0m") try: self.mutex.lock() if self.current_frame is None: print("âš ī¸ No frame available to process in _process_frame") self.mutex.unlock() # Check if we're running - if not, this is expected behavior if not self._running: print("🔄 Not running - _process_frame will exit") return # If we are running but have no frame, create a blank frame with error message h, w = 480, 640 # Default size blank_frame = np.zeros((h, w, 3), dtype=np.uint8) cv2.putText(blank_frame, "No video input", (w//2-100, h//2), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 0, 255), 2) # Emit this blank frame try: self.frame_np_ready.emit(blank_frame) print("đŸ“ē Emitted blank frame from _process_frame") except Exception as e: print(f"Error emitting blank frame: {e}") return try: frame = self.current_frame.copy() detections = self.current_detections.copy() if self.current_detections else [] metrics = self.performance_metrics.copy() print(f"🔍 _process_frame: Got frame {frame.shape}, {len(detections)} detections") except Exception as e: print(f"Error copying frame data in _process_frame: {e}") self.mutex.unlock() return self.mutex.unlock() except Exception as e: print(f"Critical error in _process_frame initialization: {e}") import traceback traceback.print_exc() try: self.mutex.unlock() except: pass return try: annotated_frame = frame.copy() # Draw detections for det in detections: if 'bbox' in det: bbox = det['bbox'] if bbox is None or len(bbox) != 4: continue x1, y1, x2, y2 = map(int, bbox) label = det.get('class_name', 'object') confidence = det.get('confidence', 0.0) class_id = det.get('class_id', -1) if class_id == 9 or is_traffic_light(label): box_color = (0, 0, 255) else: box_color = (0, 255, 0) cv2.rectangle(annotated_frame, (x1, y1), (x2, y2), box_color, 2) cv2.putText(annotated_frame, f"{label} {confidence:.2f}", (x1, y1-10), cv2.FONT_HERSHEY_SIMPLEX, 0.5, box_color, 2) if 'id' in det: id_text = f"ID: {det['id']}" (tw, th), baseline = cv2.getTextSize(id_text, cv2.FONT_HERSHEY_SIMPLEX, 0.8, 2) cv2.rectangle(annotated_frame, (x1, y1 - th - 8), (x1 + tw + 4, y1), (0, 0, 0), -1) cv2.putText(annotated_frame, id_text, (x1 + 2, y1 - 4), cv2.FONT_HERSHEY_SIMPLEX, 0.8, (0, 255, 255), 2, cv2.LINE_AA) # Find traffic light bbox traffic_light_bbox = None for det in detections: if is_traffic_light(det.get('class_name')) and 'bbox' in det: traffic_light_bbox = det['bbox'] break # --- Violation detection and overlay --- print(f"[DEBUG] Calling process_frame with frame_idx={self.frame_idx}, detections={len(detections)}, traffic_light_bbox={traffic_light_bbox}") # --- Get traffic light color info --- traffic_light_info = self.latest_traffic_light if hasattr(self, 'latest_traffic_light') else {"color": "unknown", "confidence": 0.0} # --- Get violation line y from crosswalk detection --- try: # Call crosswalk detection to get current violation line crosswalk_bbox, violation_line_coords, crosswalk_info = self.detect_crosswalk_and_violation_line(frame, traffic_light_bbox) if violation_line_coords and len(violation_line_coords) >= 2: # Extract y-coordinate from violation line coordinates violation_line_y = int(violation_line_coords[1]) # y-coordinate of start point self.last_violation_line_y = violation_line_y # Update cached value else: violation_line_y = self.last_violation_line_y if hasattr(self, 'last_violation_line_y') else None except Exception as e: print(f"[WARN] Crosswalk detection error in _process_frame: {e}") violation_line_y = self.last_violation_line_y if hasattr(self, 'last_violation_line_y') else None # --- Call violation detection logic --- try: annotated_with_viol, violators, _ = self.detect_red_light_violations( frame=frame, vehicle_detections=detections, traffic_light_color_info=traffic_light_info, violation_line_y=violation_line_y, frame_number=self.frame_idx, state_cache=getattr(self, '_violation_state_cache', None) ) self._violation_state_cache = _ # persist state print(f"[VIOLATION DEBUG] Frame {self.frame_idx}: {len(violators)} violations detected.") for v in violators: print(f"[VIOLATION DEBUG] Violation: {v}") except Exception as e: print("\033[91m[ERROR] Exception in violation detection!\033[0m") import traceback traceback.print_exc() annotated_with_viol = annotated_frame violators = [] self.frame_idx += 1 # Draw overlays annotated_with_viol = draw_performance_overlay(annotated_with_viol, metrics) cv2.circle(annotated_with_viol, (20, 20), 10, (255, 255, 0), -1) frame_rgb = cv2.cvtColor(annotated_with_viol, cv2.COLOR_BGR2RGB) try: print(f"🔴 _process_frame emitting frame_np_ready with shape: {frame_rgb.shape}") self.frame_np_ready.emit(frame_rgb) vehicle_detections = detections self.frame_np_with_violations.emit(annotated_with_viol, vehicle_detections, violators) print(f"✅ _process_frame: emitted frames with {len(violators)} violations") except Exception as e: print(f"Error emitting processed frame from _process_frame: {e}") except Exception as e: print(f"Error in _process_frame: {e}") import traceback traceback.print_exc() def detect_red_light_violations(self, frame, vehicle_detections, traffic_light_color_info, violation_line_y, frame_number, state_cache=None): print(f"\033[91m[CRITICAL] detect_red_light_violations called at frame {frame_number}\033[0m") print(f"\033[91m[CRITICAL] Frame shape: {frame.shape}, Detections: {len(vehicle_detections)}, Traffic light: {traffic_light_color_info}, Violation line: {violation_line_y}\033[0m") try: debug = True if state_cache is None: state_cache = {} # --- Persistent state for debounce and per-vehicle tracking --- if 'red_count' not in state_cache: state_cache['red_count'] = 0 if 'last_color' not in state_cache: state_cache['last_color'] = None if 'vehicle_states' not in state_cache: state_cache['vehicle_states'] = {} if 'cooldown' not in state_cache: state_cache['cooldown'] = {} # --- Traffic light color debounce --- color = traffic_light_color_info.get('color', 'unknown') conf = traffic_light_color_info.get('confidence', 0.0) print(f"\033[92m[DEBUG] Traffic light: color={color}, confidence={conf}\033[0m") if color == 'red' and conf >= 0.3: if state_cache['last_color'] == 'red': state_cache['red_count'] += 1 else: state_cache['red_count'] = 1 print(f"\033[92m[DEBUG] Red light detected, red_count={state_cache['red_count']}\033[0m") else: state_cache['red_count'] = 0 print(f"\033[92m[DEBUG] No consistent red light, red_count reset to 0\033[0m") state_cache['last_color'] = color red_consistent = state_cache['red_count'] >= 3 print(f"\033[92m[DEBUG] Red light consistent: {red_consistent} (need 3+ frames)\033[0m") # --- Frame prep --- annotated = frame.copy() h, w = frame.shape[:2] # Draw bold red line at violation_line_y (should always be available now) if violation_line_y is not None and violation_line_y > 0: print(f"\033[92m[DEBUG] Drawing violation line at y={violation_line_y}\033[0m") cv2.line(annotated, (0, violation_line_y), (w, violation_line_y), (0,0,255), 5) cv2.putText(annotated, "VIOLATION LINE", (10, max(violation_line_y-10, 20)), cv2.FONT_HERSHEY_SIMPLEX, 0.8, (0,0,255), 2) else: print(f"\033[91m[ERROR] Invalid violation line! violation_line_y={violation_line_y}\033[0m") # Draw red light indicator if color == 'red' and conf >= 0.3: # Clean text rendering without problematic characters text = "RED LIGHT DETECTED" font = cv2.FONT_HERSHEY_SIMPLEX font_scale = 1.2 thickness = 3 color_bgr = (0, 0, 255) # Red color in BGR # Get text size for background (text_width, text_height), baseline = cv2.getTextSize(text, font, font_scale, thickness) # Draw semi-transparent background rectangle for better visibility overlay = annotated.copy() cv2.rectangle(overlay, (10, 10), (20 + text_width, 20 + text_height), (0, 0, 0), -1) cv2.addWeighted(overlay, 0.7, annotated, 0.3, 0, annotated) # Draw the text with better positioning cv2.putText(annotated, text, (15, 15 + text_height), font, font_scale, color_bgr, thickness, cv2.LINE_AA) violators = [] print(f"\033[92m[DEBUG] Processing {len(vehicle_detections)} vehicle detections for violations\033[0m") # Reduce spam - only print first detection and summary if len(vehicle_detections) > 0: print(f"\033[92m[DEBUG] Sample Detection 0: {vehicle_detections[0]}\033[0m") if len(vehicle_detections) > 1: print(f"\033[92m[DEBUG] ... and {len(vehicle_detections)-1} more detections\033[0m") for i, det in enumerate(vehicle_detections): vid = det.get('id') if vid is None: print(f"\033[93m[WARNING] Detection {i} has no ID, using index as ID\033[0m") vid = f"vehicle_{i}" # Use index as fallback ID bbox = det['bbox'] if bbox is None or len(bbox) != 4: print(f"\033[93m[WARNING] Detection {i} has invalid bbox: {bbox}\033[0m") continue x1, y1, x2, y2 = map(int, bbox) cx = (x1 + x2) // 2 bottom_y = max(y1, y2) # Only print debug for vehicles that could potentially violate # (reduce spam for vehicles clearly outside violation areas) # Ignore vehicles outside central 80% of frame width if not (0.1 * w < cx < 0.9 * w): # print(f"\033[93m[DEBUG] Vehicle {vid} outside central area, skipping\033[0m") continue # --- Per-vehicle state --- if violation_line_y is None or violation_line_y <= 0: # This should not happen anymore due to fallbacks above if i == 0: print(f"\033[91m[ERROR] Invalid violation line value: {violation_line_y}, skipping frame\033[0m") h, w = frame.shape[:2] if frame is not None else (480, 640) violation_line_y = int(h * 0.75) print(f"\033[91m[ERROR] Emergency fallback: set violation_line_y to {violation_line_y}\033[0m") else: continue vstate = state_cache['vehicle_states'].setdefault(vid, {'was_behind': True, 'last_crossed': -100, 'entry_time': None, 'dwell': 0}) cooldown = state_cache['cooldown'].get(vid, 0) # Only check if not in cooldown if cooldown > 0: state_cache['cooldown'][vid] -= 1 continue # Track entry time and dwell time if bottom_y < violation_line_y: vstate['was_behind'] = True if vstate['entry_time'] is None: vstate['entry_time'] = frame_number vstate['dwell'] = 0 # print(f"\033[92m[DEBUG] Vehicle {vid} is behind violation line (y={bottom_y} < {violation_line_y})\033[0m") else: print(f"\033[92m[DEBUG] Vehicle {vid} past violation line (y={bottom_y} >= {violation_line_y}), was_behind={vstate['was_behind']}, red_consistent={red_consistent}\033[0m") if vstate['was_behind'] and red_consistent: # Violation detected print(f"\033[91m🚨 [VIOLATION DETECTED] Vehicle {vid} crossed during RED at frame {frame_number}! 🚨\033[0m") violators.append({ 'id': vid, 'bbox': bbox, 'frame': frame_number, 'violation_type': 'red_light', 'violation_line_y': violation_line_y }) vstate['was_behind'] = False vstate['last_crossed'] = frame_number state_cache['cooldown'][vid] = 30 # Debounce for 30 frames if debug: print(f"[VIOLATION] Vehicle {vid} crossed at frame {frame_number} during RED!") else: if not vstate['was_behind']: # print(f"\033[93m[DEBUG] Vehicle {vid} was not behind line before crossing\033[0m") pass if not red_consistent: print(f"\033[93m[DEBUG] Red light not consistent for vehicle {vid} (red_count={state_cache['red_count']})\033[0m") # Optionally: advanced logic for dwell, direction, speed, etc. return annotated, violators, state_cache except Exception as e: print(f"[ERROR] Exception in detect_red_light_violations: {e}") import traceback traceback.print_exc() return frame, [], state_cache def _add_violation_detection(self, annotated_frame, detections, original_frame): """Add violation detection to the frame processing""" print(f"🔍 [DEBUG] _add_violation_detection called with frame shape: {original_frame.shape}, detections: {len(detections)}") try: # Find traffic light bbox traffic_light_bbox = None for det in detections: if is_traffic_light(det.get('class_name')) and 'bbox' in det: traffic_light_bbox = det['bbox'] print(f"đŸšĻ Found traffic light bbox: {traffic_light_bbox}") break print(f"[DEBUG] _add_violation_detection with frame_idx={self.frame_idx}, detections={len(detections)}, traffic_light_bbox={traffic_light_bbox}") # Get traffic light color info traffic_light_info = self.latest_traffic_light if hasattr(self, 'latest_traffic_light') else {"color": "unknown", "confidence": 0.0} print(f"đŸšĻ Traffic light info: {traffic_light_info}") # Get violation line y from crosswalk detection print(f"🔍 Calling crosswalk detection...") try: crosswalk_result = self.detect_crosswalk_and_violation_line(original_frame, traffic_light_bbox) print(f"🔍 Crosswalk detection raw result: {crosswalk_result}") # Handle different return formats if isinstance(crosswalk_result, tuple): if len(crosswalk_result) == 3: crosswalk_bbox, violation_line_coords, crosswalk_info = crosswalk_result elif len(crosswalk_result) == 2: crosswalk_bbox, violation_line_coords = crosswalk_result crosswalk_info = {} else: print(f"🔍 Unexpected crosswalk result format: {len(crosswalk_result)} items") violation_line_coords = None else: violation_line_coords = crosswalk_result print(f"🔍 Crosswalk detection result: violation_line_coords={violation_line_coords}") if violation_line_coords and len(violation_line_coords) >= 2: violation_line_y = int(violation_line_coords[1]) self.last_violation_line_y = violation_line_y print(f"🔍 Set violation_line_y to: {violation_line_y}") else: # Use cached value or calculate a reasonable default violation_line_y = getattr(self, 'last_violation_line_y', None) if violation_line_y is None: h, w = original_frame.shape[:2] violation_line_y = int(h * 0.75) # Default to 75% down the frame self.last_violation_line_y = violation_line_y print(f"🔍 No cached violation line, using default: {violation_line_y} (75% of frame height {h})") else: print(f"🔍 Using cached violation_line_y: {violation_line_y}") except Exception as e: print(f"[WARN] Crosswalk detection error: {e}") import traceback traceback.print_exc() # Use cached value or calculate a reasonable default violation_line_y = getattr(self, 'last_violation_line_y', None) if violation_line_y is None: h, w = original_frame.shape[:2] violation_line_y = int(h * 0.75) # Default to 75% down the frame self.last_violation_line_y = violation_line_y print(f"🔍 Exception fallback: using default violation_line_y: {violation_line_y} (75% of frame height {h})") else: print(f"🔍 Exception fallback: using cached violation_line_y: {violation_line_y}") # Ensure violation_line_y is never None if violation_line_y is None: h, w = original_frame.shape[:2] violation_line_y = int(h * 0.75) self.last_violation_line_y = violation_line_y print(f"🔍 Final fallback: violation_line_y was None, set to default: {violation_line_y}") # Try to use a reasonable default based on frame height if violation_line_y is None: frame_height = original_frame.shape[0] violation_line_y = int(frame_height * 0.9) # 90% of frame height print(f"🔍 Using default violation_line_y: {violation_line_y} (90% of frame height {frame_height})") self.last_violation_line_y = violation_line_y # Call violation detection logic print(f"🔍 About to call detect_red_light_violations with violation_line_y={violation_line_y}") try: annotated_with_viol, violators, state_cache = self.detect_red_light_violations( frame=original_frame, vehicle_detections=detections, traffic_light_color_info=traffic_light_info, violation_line_y=violation_line_y, frame_number=self.frame_idx, state_cache=getattr(self, '_violation_state_cache', None) ) self._violation_state_cache = state_cache print(f"[VIOLATION DEBUG] Frame {self.frame_idx}: {len(violators)} violations detected.") for v in violators: print(f"[VIOLATION DEBUG] Violation: {v}") # Emit violation signal print(f"🔍 Emitting frame_np_with_violations signal...") self.frame_np_with_violations.emit(annotated_with_viol, detections, violators) print(f"✅ Emitted frame_np_with_violations with {len(violators)} violations") except Exception as e: print(f"[ERROR] Exception in violation detection: {e}") import traceback traceback.print_exc() annotated_with_viol = annotated_frame violators = [] self.frame_idx += 1 # Draw performance overlay print(f"🔍 Drawing performance overlay...") annotated_with_viol = draw_performance_overlay(annotated_with_viol, self.performance_metrics) print(f"🔍 _add_violation_detection returning frame with shape: {annotated_with_viol.shape}") return annotated_with_viol except Exception as e: print(f"[ERROR] Exception in _add_violation_detection: {e}") import traceback traceback.print_exc() return annotated_frame ##########WORKING VERSION########## from PySide6.QtCore import QObject, Signal, QThread, Qt, QMutex, QWaitCondition, QTimer from PySide6.QtGui import QImage, QPixmap import cv2 import time import numpy as np from collections import deque from typing import Dict, List, Optional import os import sys import math # Add parent directory to path for imports sys.path.append(os.path.dirname(os.path.dirname(os.path.abspath(__file__)))) # Import utilities from utils.annotation_utils import ( draw_detections, draw_performance_metrics, resize_frame_for_display, convert_cv_to_qimage, convert_cv_to_pixmap, pipeline_with_violation_line ) # Import enhanced annotation utilities from utils.enhanced_annotation_utils import ( enhanced_draw_detections, draw_performance_overlay, enhanced_cv_to_qimage, enhanced_cv_to_pixmap ) # Import traffic light color detection utilities from red_light_violation_pipeline import RedLightViolationPipeline from utils.traffic_light_utils import detect_traffic_light_color, draw_traffic_light_status, ensure_traffic_light_color from utils.crosswalk_utils2 import detect_crosswalk_and_violation_line, draw_violation_line, get_violation_line_y from controllers.deepsort_tracker import DeepSortVehicleTracker TRAFFIC_LIGHT_CLASSES = ["traffic light", "trafficlight", "tl"] TRAFFIC_LIGHT_NAMES = ['trafficlight', 'traffic light', 'tl', 'signal'] def normalize_class_name(class_name): """Normalizes class names from different models/formats to a standard name""" if not class_name: return "" name_lower = class_name.lower() # Traffic light variants if name_lower in ['traffic light', 'trafficlight', 'traffic_light', 'tl', 'signal']: return 'traffic light' # Keep specific vehicle classes (car, truck, bus) separate # Just normalize naming variations within each class if name_lower in ['car', 'auto', 'automobile']: return 'car' elif name_lower in ['truck']: return 'truck' elif name_lower in ['bus']: return 'bus' elif name_lower in ['motorcycle', 'scooter', 'motorbike', 'bike']: return 'motorcycle' # Person variants if name_lower in ['person', 'pedestrian', 'human']: return 'person' # Other common classes can be added here return class_name def is_traffic_light(class_name): """Helper function to check if a class name is a traffic light with normalization""" if not class_name: return False normalized = normalize_class_name(class_name) return normalized == 'traffic light' class VideoController(QObject): frame_ready = Signal(object, object, dict) # QPixmap, detections, metrics raw_frame_ready = Signal(np.ndarray, list, float) # frame, detections, fps frame_np_ready = Signal(np.ndarray) # Direct NumPy frame signal for display stats_ready = Signal(dict) # Dictionary with stats (fps, detection_time, traffic_light) violation_detected = Signal(dict) # Signal emitted when a violation is detected def __init__(self, model_manager=None): """ Initialize video controller. Args: model_manager: Model manager instance for detection and violation """ super().__init__() self._running = False self.source = None self.source_type = None self.source_fps = 0 self.performance_metrics = {} self.mutex = QMutex() # Performance tracking self.processing_times = deque(maxlen=100) # Store last 100 processing times self.fps_history = deque(maxlen=100) # Store last 100 FPS values self.start_time = time.time() self.frame_count = 0 self.actual_fps = 0.0 self.model_manager = model_manager self.inference_model = None self.tracker = None self.current_frame = None self.current_detections = [] # Traffic light state tracking self.latest_traffic_light = {"color": "unknown", "confidence": 0.0} # Set up violation detection try: from controllers.red_light_violation_detector import RedLightViolationDetector self.violation_detector = RedLightViolationDetector() print("✅ Red light violation detector initialized") except Exception as e: self.violation_detector = None print(f"❌ Could not initialize violation detector: {e}") # Import crosswalk detection try: self.detect_crosswalk_and_violation_line = detect_crosswalk_and_violation_line self.draw_violation_line = draw_violation_line print("✅ Crosswalk detection utilities imported") except Exception as e: print(f"❌ Could not import crosswalk detection: {e}") self.detect_crosswalk_and_violation_line = lambda frame, *args: (None, None, {}) self.draw_violation_line = lambda frame, *args, **kwargs: frame # Configure thread self.thread = QThread() self.moveToThread(self.thread) self.thread.started.connect(self._run) # Performance measurement self.mutex = QMutex() self.condition = QWaitCondition() self.performance_metrics = { 'FPS': 0.0, 'Detection (ms)': 0.0, 'Total (ms)': 0.0 } # Setup render timer with more aggressive settings for UI updates self.render_timer = QTimer() self.render_timer.timeout.connect(self._process_frame) # Frame buffer self.current_frame = None self.current_detections = [] self.current_violations = [] # Debug counter for monitoring frame processing self.debug_counter = 0 self.violation_frame_counter = 0 # Add counter for violation processing # Vehicle movement tracking for violation detection self.vehicle_history = {} # track_id -> deque of positions self.movement_threshold = 3 # pixels movement threshold # Initialize the traffic light color detection pipeline self.cv_violation_pipeline = RedLightViolationPipeline(debug=True) # Initialize vehicle tracker self.vehicle_tracker = DeepSortVehicleTracker() # Add red light violation system # self.red_light_violation_system = RedLightViolationSystem() def set_source(self, source): """ Set video source (file path, camera index, or URL) Args: source: Video source - can be a camera index (int), file path (str), or URL (str). If None, defaults to camera 0. Returns: bool: True if source was set successfully, False otherwise """ print(f"đŸŽŦ VideoController.set_source called with: {source} (type: {type(source)})") # Store current state was_running = self._running # Stop current processing if running if self._running: print("âšī¸ Stopping current video processing") self.stop() try: # Handle source based on type with better error messages if source is None: print("âš ī¸ Received None source, defaulting to camera 0") self.source = 0 self.source_type = "camera" elif isinstance(source, str) and source.strip(): if os.path.exists(source): # Valid file path self.source = source self.source_type = "file" print(f"📄 Source set to file: {self.source}") elif source.lower().startswith(("http://", "https://", "rtsp://", "rtmp://")): # URL stream self.source = source self.source_type = "url" print(f"🌐 Source set to URL stream: {self.source}") elif source.isdigit(): # String camera index (convert to int) self.source = int(source) self.source_type = "camera" print(f"📹 Source set to camera index: {self.source}") else: # Try as device path or special string self.source = source self.source_type = "device" print(f"📱 Source set to device path: {self.source}") elif isinstance(source, int): # Camera index self.source = source self.source_type = "camera" print(f"📹 Source set to camera index: {self.source}") else: # Unrecognized - default to camera 0 with warning print(f"âš ī¸ Unrecognized source type: {type(source)}, defaulting to camera 0") self.source = 0 self.source_type = "camera" except Exception as e: print(f"❌ Error setting source: {e}") self.source = 0 self.source_type = "camera" return False # Get properties of the source (fps, dimensions, etc) print(f"🔍 Getting properties for source: {self.source}") success = self._get_source_properties() if success: print(f"✅ Successfully configured source: {self.source} ({self.source_type})") # Emit successful source change self.stats_ready.emit({ 'source_changed': True, 'source_type': self.source_type, 'fps': self.source_fps if hasattr(self, 'source_fps') else 0, 'dimensions': f"{self.frame_width}x{self.frame_height}" if hasattr(self, 'frame_width') else "unknown" }) # Restart if previously running if was_running: print("â–ļī¸ Restarting video processing with new source") self.start() else: print(f"❌ Failed to configure source: {self.source}") # Notify UI about the error self.stats_ready.emit({ 'source_changed': False, 'error': f"Invalid video source: {self.source}", 'source_type': self.source_type, 'fps': 0, 'detection_time_ms': "0", 'traffic_light_color': {"color": "unknown", "confidence": 0.0} }) return False # Return success status return success def _get_source_properties(self): """ Get properties of video source Returns: bool: True if source was successfully opened, False otherwise """ try: print(f"🔍 Opening video source for properties check: {self.source}") cap = cv2.VideoCapture(self.source) # Verify capture opened successfully if not cap.isOpened(): print(f"❌ Failed to open video source: {self.source}") return False # Read properties self.source_fps = cap.get(cv2.CAP_PROP_FPS) if self.source_fps <= 0: print("âš ī¸ Source FPS not available, using default 30 FPS") self.source_fps = 30.0 # Default if undetectable self.frame_width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH)) self.frame_height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT)) self.frame_count = int(cap.get(cv2.CAP_PROP_FRAME_COUNT)) # Try reading a test frame to confirm source is truly working ret, test_frame = cap.read() if not ret or test_frame is None: print("âš ī¸ Could not read test frame from source") # For camera sources, try one more time with delay if self.source_type == "camera": print("🔄 Retrying camera initialization...") time.sleep(1.0) # Wait a moment for camera to initialize ret, test_frame = cap.read() if not ret or test_frame is None: print("❌ Camera initialization failed after retry") cap.release() return False else: print("❌ Could not read frames from video source") cap.release() return False # Release the capture cap.release() print(f"✅ Video source properties: {self.frame_width}x{self.frame_height}, {self.source_fps} FPS") return True except Exception as e: print(f"❌ Error getting source properties: {e}") return False return False def start(self): """Start video processing""" if not self._running: self._running = True self.start_time = time.time() self.frame_count = 0 self.debug_counter = 0 print("DEBUG: Starting video processing thread") # Start the processing thread - add more detailed debugging if not self.thread.isRunning(): print("🚀 Thread not running, starting now...") try: self.thread.start() print("✅ Thread started successfully") print(f"🔄 Thread state: running={self.thread.isRunning()}, finished={self.thread.isFinished()}") except Exception as e: print(f"❌ Failed to start thread: {e}") import traceback traceback.print_exc() else: print("âš ī¸ Thread is already running!") print(f"🔄 Thread state: running={self.thread.isRunning()}, finished={self.thread.isFinished()}") # Start the render timer with a very aggressive interval (10ms = 100fps) # This ensures we can process frames as quickly as possible print("âąī¸ Starting render timer...") self.render_timer.start(10) print("✅ Render timer started at 100Hz") def stop(self): """Stop video processing""" if self._running: print("DEBUG: Stopping video processing") self._running = False self.render_timer.stop() # Properly terminate the thread self.thread.quit() if not self.thread.wait(3000): # Wait 3 seconds max self.thread.terminate() print("WARNING: Thread termination forced") # Clear the current frame self.mutex.lock() self.current_frame = None self.mutex.unlock() print("DEBUG: Video processing stopped") def capture_snapshot(self) -> np.ndarray: """Capture current frame""" if self.current_frame is not None: return self.current_frame.copy() return None def _run(self): """Main processing loop (runs in thread)""" try: # Print the source we're trying to open print(f"DEBUG: Opening video source: {self.source} (type: {type(self.source)})") cap = None # Initialize capture variable # Try to open source with more robust error handling max_retries = 3 retry_delay = 1.0 # seconds # Function to attempt opening the source with multiple retries def try_open_source(src, retries=max_retries, delay=retry_delay): for attempt in range(1, retries + 1): print(f"đŸŽĨ Opening source (attempt {attempt}/{retries}): {src}") try: capture = cv2.VideoCapture(src) if capture.isOpened(): # Try to read a test frame to confirm it's working ret, test_frame = capture.read() if ret and test_frame is not None: print(f"✅ Source opened successfully: {src}") # Reset capture position for file sources if isinstance(src, str) and os.path.exists(src): capture.set(cv2.CAP_PROP_POS_FRAMES, 0) return capture else: print(f"âš ī¸ Source opened but couldn't read frame: {src}") capture.release() else: print(f"âš ī¸ Failed to open source: {src}") # Retry after delay if attempt < retries: print(f"Retrying in {delay:.1f} seconds...") time.sleep(delay) except Exception as e: print(f"❌ Error opening source {src}: {e}") if attempt < retries: print(f"Retrying in {delay:.1f} seconds...") time.sleep(delay) print(f"❌ Failed to open source after {retries} attempts: {src}") return None # Handle different source types if isinstance(self.source, str) and os.path.exists(self.source): # It's a valid file path print(f"📄 Opening video file: {self.source}") cap = try_open_source(self.source) elif isinstance(self.source, int) or (isinstance(self.source, str) and self.source.isdigit()): # It's a camera index camera_idx = int(self.source) if isinstance(self.source, str) else self.source print(f"📹 Opening camera with index: {camera_idx}") # For cameras, try with different backend options if it fails cap = try_open_source(camera_idx) # If failed, try with DirectShow backend on Windows if cap is None and os.name == 'nt': print("🔄 Trying camera with DirectShow backend...") cap = try_open_source(camera_idx + cv2.CAP_DSHOW) else: # Try as a string source (URL or device path) print(f"🌐 Opening source as string: {self.source}") cap = try_open_source(str(self.source)) # Check if we successfully opened the source if cap is None: print(f"❌ Failed to open video source after all attempts: {self.source}") # Notify UI about the error self.stats_ready.emit({ 'error': f"Could not open video source: {self.source}", 'fps': "0", 'detection_time_ms': "0", 'traffic_light_color': {"color": "unknown", "confidence": 0.0} }) return # Check again to ensure capture is valid if not cap or not cap.isOpened(): print(f"ERROR: Could not open video source {self.source}") # Emit a signal to notify UI about the error self.stats_ready.emit({ 'error': f"Failed to open video source: {self.source}", 'fps': "0", 'detection_time_ms': "0", 'traffic_light_color': {"color": "unknown", "confidence": 0.0} }) return # Configure frame timing based on source FPS frame_time = 1.0 / self.source_fps if self.source_fps > 0 else 0.033 prev_time = time.time() # Log successful opening print(f"SUCCESS: Video source opened: {self.source}") print(f"Source info - FPS: {self.source_fps}, Size: {self.frame_width}x{self.frame_height}") # Main processing loop frame_error_count = 0 max_consecutive_errors = 10 while self._running and cap.isOpened(): try: ret, frame = cap.read() # Add critical frame debugging print(f"🟡 Frame read attempt: ret={ret}, frame={None if frame is None else frame.shape}") if not ret or frame is None: frame_error_count += 1 print(f"âš ī¸ Frame read error ({frame_error_count}/{max_consecutive_errors})") if frame_error_count >= max_consecutive_errors: print("❌ Too many consecutive frame errors, stopping video thread") break # Skip this iteration and try again time.sleep(0.1) # Wait a bit before trying again continue # Reset the error counter if we successfully got a frame frame_error_count = 0 except Exception as e: print(f"❌ Critical error reading frame: {e}") frame_error_count += 1 if frame_error_count >= max_consecutive_errors: print("❌ Too many errors, stopping video thread") break continue # Detection and violation processing process_start = time.time() # Process detections detection_start = time.time() detections = [] if self.model_manager: detections = self.model_manager.detect(frame) # Normalize class names for consistency and check for traffic lights traffic_light_indices = [] for i, det in enumerate(detections): if 'class_name' in det: original_name = det['class_name'] normalized_name = normalize_class_name(original_name) # Keep track of traffic light indices if normalized_name == 'traffic light' or original_name == 'traffic light': traffic_light_indices.append(i) if original_name != normalized_name: print(f"📊 Normalized class name: '{original_name}' -> '{normalized_name}'") det['class_name'] = normalized_name # Ensure we have at least one traffic light for debugging if not traffic_light_indices and self.source_type == 'video': print("âš ī¸ No traffic lights detected, checking for objects that might be traffic lights...") # Try lowering the confidence threshold specifically for traffic lights # This is only for debugging purposes if self.model_manager and hasattr(self.model_manager, 'detect'): try: low_conf_detections = self.model_manager.detect(frame, conf_threshold=0.2) for det in low_conf_detections: if 'class_name' in det and det['class_name'] == 'traffic light': if det not in detections: print(f"đŸšĻ Found low confidence traffic light: {det['confidence']:.2f}") detections.append(det) except: pass detection_time = (time.time() - detection_start) * 1000 # Violation detection is disabled violation_start = time.time() violations = [] # if self.model_manager and detections: # violations = self.model_manager.detect_violations( # detections, frame, time.time() # ) violation_time = (time.time() - violation_start) * 1000 # Update tracking if available if self.model_manager: detections = self.model_manager.update_tracking(detections, frame) # If detections are returned as tuples, convert to dicts for downstream code if detections and isinstance(detections[0], tuple): # Convert (id, bbox, conf, class_id) to dict detections = [ {'id': d[0], 'bbox': d[1], 'confidence': d[2], 'class_id': d[3]} for d in detections ] # Calculate timing metrics process_time = (time.time() - process_start) * 1000 self.processing_times.append(process_time) # Update FPS now = time.time() self.frame_count += 1 elapsed = now - self.start_time if elapsed > 0: self.actual_fps = self.frame_count / elapsed fps_smoothed = 1.0 / (now - prev_time) if now > prev_time else 0 prev_time = now # Update metrics self.performance_metrics = { 'FPS': f"{fps_smoothed:.1f}", 'Detection (ms)': f"{detection_time:.1f}", 'Total (ms)': f"{process_time:.1f}" } # Store current frame data (thread-safe) self.mutex.lock() self.current_frame = frame.copy() self.current_detections = detections self.mutex.unlock() # Process frame with annotations before sending to UI annotated_frame = frame.copy() # Draw detections with bounding boxes for visual feedback if detections and len(detections) > 0: print(f"Drawing {len(detections)} detection boxes on frame") for det in detections: if 'bbox' in det: bbox = det['bbox'] x1, y1, x2, y2 = map(int, bbox) label = det.get('class_name', 'object') confidence = det.get('confidence', 0.0) # Robustness: ensure label and confidence are not None if label is None: label = 'object' if confidence is None: confidence = 0.0 class_id = det.get('class_id', -1) # Use red color if id==9 or is traffic light, else green if class_id == 9 or is_traffic_light(label): box_color = (0, 0, 255) # Red in BGR else: box_color = (0, 255, 0) # Green in BGR if 'id' in det: id_text = f"ID: {det['id']}" # Draw rectangle and label cv2.rectangle(annotated_frame, (x1, y1), (x2, y2), box_color, 2) cv2.putText(annotated_frame, f"{id_text} {label} ", (x1, y1-10), cv2.FONT_HERSHEY_SIMPLEX, 0.5, box_color, 2) # Draw vehicle ID if present # if 'id' in det: # id_text = f"ID: {det['id']}" # # Calculate text size for background # (tw, th), baseline = cv2.getTextSize(id_text, cv2.FONT_HERSHEY_SIMPLEX, 0.8, 2) # # Draw filled rectangle for background (top-left of bbox) # cv2.rectangle(annotated_frame, (x1, y1 - th - 8), (x1 + tw + 4, y1), (0, 0, 0), -1) # # Draw the ID text in bold yellow # cv2.putText(annotated_frame, id_text, (x1 + 2, y1 - 4), cv2.FONT_HERSHEY_SIMPLEX, 0.8, (0, 255, 255), 2, cv2.LINE_AA) # print(f"[DEBUG] Detection ID: {det['id']} BBOX: {bbox} CLASS: {label} CONF: {confidence:.2f}") if class_id == 9 or is_traffic_light(label): try: light_info = detect_traffic_light_color(annotated_frame, [x1, y1, x2, y2]) if light_info.get("color", "unknown") == "unknown": light_info = ensure_traffic_light_color(annotated_frame, [x1, y1, x2, y2]) det['traffic_light_color'] = light_info annotated_frame = draw_traffic_light_status(annotated_frame, bbox, light_info) # --- Update latest_traffic_light for UI/console --- self.latest_traffic_light = light_info except Exception as e: print(f"[WARN] Could not detect/draw traffic light color: {e}") # --- VIOLATION DETECTION LOGIC (conditional based on traffic lights or crosswalk) --- # First, check if we have traffic lights detected traffic_lights = [] has_traffic_lights = False for det in detections: if is_traffic_light(det.get('class_name')): has_traffic_lights = True if 'traffic_light_color' in det: light_info = det['traffic_light_color'] traffic_lights.append({'bbox': det['bbox'], 'color': light_info.get('color', 'unknown'), 'confidence': light_info.get('confidence', 0.0)}) # Get traffic light position for crosswalk detection traffic_light_position = None if has_traffic_lights: for det in detections: if is_traffic_light(det.get('class_name')) and 'bbox' in det: traffic_light_bbox = det['bbox'] # Extract center point from bbox for crosswalk utils x1, y1, x2, y2 = traffic_light_bbox traffic_light_position = ((x1 + x2) // 2, (y1 + y2) // 2) break # Run crosswalk detection to check if crosswalk exists try: result_frame, crosswalk_bbox, violation_line_y, debug_info = detect_crosswalk_and_violation_line( annotated_frame, traffic_light_position ) except Exception as e: print(f"[ERROR] Crosswalk detection failed: {e}") result_frame, crosswalk_bbox, violation_line_y, debug_info = annotated_frame, None, None, {} # Check if crosswalk is detected crosswalk_detected = crosswalk_bbox is not None stop_line_detected = debug_info.get('stop_line') is not None # Only proceed with violation logic if we have traffic lights OR crosswalk detected # AND every 3rd frame for performance (adjust as needed) violations = [] self.violation_frame_counter += 1 should_process_violations = (has_traffic_lights or crosswalk_detected) and (self.violation_frame_counter % 3 == 0) if should_process_violations: print(f"[DEBUG] Processing violation logic - Traffic lights: {has_traffic_lights}, Crosswalk: {crosswalk_detected}") # Create violation line coordinates from y position violation_line = None if violation_line_y is not None: start_pt = (0, violation_line_y) end_pt = (annotated_frame.shape[1], violation_line_y) violation_line = (start_pt, end_pt) # Draw the thick red violation line with black label background (like in image) line_color = (0, 0, 255) # Red color cv2.line(annotated_frame, start_pt, end_pt, line_color, 6) # Thick line # Draw black background for label label = "Violation Line" font = cv2.FONT_HERSHEY_SIMPLEX font_scale = 0.8 thickness = 2 (text_width, text_height), baseline = cv2.getTextSize(label, font, font_scale, thickness) # Black background rectangle cv2.rectangle(annotated_frame, (10, start_pt[1] - text_height - 15), (10 + text_width + 10, start_pt[1] - 5), (0, 0, 0), -1) # Black background # Red text cv2.putText(annotated_frame, label, (15, start_pt[1] - 10), font, font_scale, line_color, thickness) print(f"[DEBUG] Violation line drawn at y={start_pt[1]}, type={label}") else: print(f"[DEBUG] No valid violation line detected.") # DeepSORT tracking integration with movement detection tracked_vehicles = [] if hasattr(self, 'vehicle_tracker') and self.vehicle_tracker is not None: try: vehicle_dets = [det for det in detections if det.get('class_name') in ['car', 'truck', 'bus', 'motorcycle', 'van', 'bicycle'] and 'bbox' in det] # Pass the detection dictionaries directly to the tracker tracks = self.vehicle_tracker.update(vehicle_dets, frame) # tracks is a list of dicts: [{'id': track_id, 'bbox': [x1,y1,x2,y2], 'confidence': conf, 'class_id': class_id}, ...] for track in tracks: track_id = track['id'] bbox = track['bbox'] # Calculate vehicle center for movement tracking x1, y1, x2, y2 = map(float, bbox) center_y = (y1 + y2) / 2 # Initialize or update vehicle history if track_id not in self.vehicle_history: from collections import deque self.vehicle_history[track_id] = deque(maxlen=5) self.vehicle_history[track_id].append(center_y) # Calculate movement (only if we have previous positions) is_moving = False if len(self.vehicle_history[track_id]) >= 2: prev_y = self.vehicle_history[track_id][-2] current_y = self.vehicle_history[track_id][-1] dy = abs(current_y - prev_y) is_moving = dy > self.movement_threshold tracked_vehicles.append({ 'id': track_id, 'bbox': bbox, 'center_y': center_y, 'is_moving': is_moving, 'prev_y': self.vehicle_history[track_id][-2] if len(self.vehicle_history[track_id]) >= 2 else center_y }) print(f"[DEBUG] DeepSORT tracked {len(tracked_vehicles)} vehicles") except Exception as e: print(f"[ERROR] DeepSORT tracking failed: {e}") tracked_vehicles = [] else: print("[WARN] DeepSORT vehicle tracker not available!") # Red light violation detection red_lights = [] for tl in traffic_lights: if tl.get('color') == 'red': red_lights.append(tl) print(f"[DEBUG] Red light(s) detected: {len(red_lights)} red lights") vehicle_debugs = [] # Always print vehicle debug info for frames with violation logic for v in tracked_vehicles: bbox = v['bbox'] x1, y1, x2, y2 = map(int, bbox) # Convert to integers for OpenCV vehicle_debugs.append(f"Tracked Vehicle ID={v['id']} bbox=[{x1},{y1},{x2},{y2}] bottom_y={y2} vline_y={violation_line_y}") if red_lights and violation_line_y is not None: print(f"[DEBUG] Checking {len(tracked_vehicles)} tracked vehicles for violations") for v in tracked_vehicles: bbox = v['bbox'] x1, y1, x2, y2 = map(int, bbox) # Convert to integers for OpenCV if y2 > violation_line_y: print(f"[DEBUG] RED LIGHT VIOLATION: Vehicle ID={v['id']} at bbox=[{x1},{y1},{x2},{y2}] (y2={y2} > vline_y={violation_line_y})") # Fix the violation data format to match UI expectations violations.append({'track_id': v['id'], 'id': v['id'], 'bbox': [x1, y1, x2, y2], 'violation': 'red_light'}) cv2.rectangle(annotated_frame, (x1, y1), (x2, y2), (0, 140, 255), 4) # Orange cv2.putText(annotated_frame, f'VIOLATION ID:{v["id"]}', (x1, y1-20), cv2.FONT_HERSHEY_SIMPLEX, 0.7, (0,140,255), 2) else: print(f"[DEBUG] No violation: Vehicle ID={v['id']} at bbox=[{x1},{y1},{x2},{y2}] (y2={y2} <= vline_y={violation_line_y})") cv2.rectangle(annotated_frame, (x1, y1), (x2, y2), (0, 255, 0), 2) cv2.putText(annotated_frame, f'ID:{v["id"]}', (x1, y1-10), cv2.FONT_HERSHEY_SIMPLEX, 0.6, (0,255,0), 2) if not violations: print("[DEBUG] No red light violations detected this frame.") else: print(f"[DEBUG] No red light or no violation line for this frame. Red lights: {len(red_lights)}, vline_y: {violation_line_y}") # Print vehicle debug info for frames with violation logic for vdbg in vehicle_debugs: print(f"[DEBUG] {vdbg}") else: print(f"[DEBUG] Skipping violation logic - Frame {self.violation_frame_counter}: Traffic lights: {has_traffic_lights}, Crosswalk: {crosswalk_detected}") violation_line_y = None # Set to None when no violation logic runs # Always emit violation signal (may be empty when no violation logic runs) self.violation_detected.emit({'violations': violations, 'frame': frame, 'violation_line_y': violation_line_y}) # Add FPS display directly on frame # cv2.putText(annotated_frame, f"FPS: {fps_smoothed:.1f}", (10, 30), # cv2.FONT_HERSHEY_SIMPLEX, 1, (255, 255, 255), 2) # # --- Always draw detected traffic light color indicator at top --- # color = self.latest_traffic_light.get('color', 'unknown') if isinstance(self.latest_traffic_light, dict) else str(self.latest_traffic_light) # confidence = self.latest_traffic_light.get('confidence', 0.0) if isinstance(self.latest_traffic_light, dict) else 0.0 # indicator_size = 30 # margin = 10 # status_colors = { # "red": (0, 0, 255), # "yellow": (0, 255, 255), # "green": (0, 255, 0), # "unknown": (200, 200, 200) # } # draw_color = status_colors.get(color, (200, 200, 200)) # # Draw circle indicator # cv2.circle( # annotated_frame, # (annotated_frame.shape[1] - margin - indicator_size, margin + indicator_size), # indicator_size, # draw_color, # -1 # ) # # Add color text # cv2.putText( # annotated_frame, # f"{color.upper()} ({confidence:.2f})", # (annotated_frame.shape[1] - margin - indicator_size - 120, margin + indicator_size + 10), # cv2.FONT_HERSHEY_SIMPLEX, # 0.7, # (0, 0, 0), # 2 # ) # Signal for raw data subscribers (now without violations) # Emit with correct number of arguments try: self.raw_frame_ready.emit(frame.copy(), detections, fps_smoothed) print(f"✅ raw_frame_ready signal emitted with {len(detections)} detections, fps={fps_smoothed:.1f}") except Exception as e: print(f"❌ Error emitting raw_frame_ready: {e}") import traceback traceback.print_exc()# Emit the NumPy frame signal for direct display - annotated version for visual feedback print(f"🔴 Emitting frame_np_ready signal with annotated_frame shape: {annotated_frame.shape}") try: # Make sure the frame can be safely transmitted over Qt's signal system # Create a contiguous copy of the array frame_copy = np.ascontiguousarray(annotated_frame) print(f"🔍 Debug - Before emission: frame_copy type={type(frame_copy)}, shape={frame_copy.shape}, is_contiguous={frame_copy.flags['C_CONTIGUOUS']}") self.frame_np_ready.emit(frame_copy) print("✅ frame_np_ready signal emitted successfully") except Exception as e: print(f"❌ Error emitting frame: {e}") import traceback traceback.print_exc() # Emit stats signal for performance monitoring stats = { 'fps': fps_smoothed, 'detection_fps': fps_smoothed, # Numeric value for analytics 'detection_time': detection_time, 'detection_time_ms': detection_time, # Numeric value for analytics 'traffic_light_color': self.latest_traffic_light } # Print detailed stats for debugging tl_color = "unknown" if isinstance(self.latest_traffic_light, dict): tl_color = self.latest_traffic_light.get('color', 'unknown') elif isinstance(self.latest_traffic_light, str): tl_color = self.latest_traffic_light print(f"đŸŸĸ Stats Updated: FPS={fps_smoothed:.2f}, Inference={detection_time:.2f}ms, Traffic Light={tl_color}") # Emit stats signal self.stats_ready.emit(stats) # Control processing rate for file sources if isinstance(self.source, str) and self.source_fps > 0: frame_duration = time.time() - process_start if frame_duration < frame_time: time.sleep(frame_time - frame_duration) cap.release() except Exception as e: print(f"Video processing error: {e}") import traceback traceback.print_exc() finally: self._running = False def _process_frame(self): """Process current frame for display with improved error handling""" try: self.mutex.lock() if self.current_frame is None: print("âš ī¸ No frame available to process") self.mutex.unlock() # Check if we're running - if not, this is expected behavior if not self._running: return # If we are running but have no frame, create a blank frame with error message h, w = 480, 640 # Default size blank_frame = np.zeros((h, w, 3), dtype=np.uint8) cv2.putText(blank_frame, "No video input", (w//2-100, h//2), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 0, 255), 2) # Emit this blank frame try: self.frame_np_ready.emit(blank_frame) except Exception as e: print(f"Error emitting blank frame: {e}") return # Make a copy of the data we need try: frame = self.current_frame.copy() detections = self.current_detections.copy() if self.current_detections else [] violations = [] # Violations are disabled metrics = self.performance_metrics.copy() except Exception as e: print(f"Error copying frame data: {e}") self.mutex.unlock() return self.mutex.unlock() except Exception as e: print(f"Critical error in _process_frame initialization: {e}") import traceback traceback.print_exc() try: self.mutex.unlock() except: pass return try: # --- Simplified frame processing for display --- # The violation logic is now handled in the main _run thread # This method just handles basic display overlays annotated_frame = frame.copy() # Add performance overlays and debug markers annotated_frame = draw_performance_overlay(annotated_frame, metrics) cv2.circle(annotated_frame, (20, 20), 10, (255, 255, 0), -1) # Convert BGR to RGB before display (for PyQt/PySide) frame_rgb = cv2.cvtColor(annotated_frame, cv2.COLOR_BGR2RGB) # Display the RGB frame in the UI (replace with your display logic) # Example: self.image_label.setPixmap(QPixmap.fromImage(QImage(frame_rgb.data, w, h, QImage.Format_RGB888))) except Exception as e: print(f"Error in _process_frame: {e}") import traceback traceback.print_exc() # --- Removed unused internal violation line detection methods and RedLightViolationSystem usage --- 3###badiya from PySide6.QtCore import QObject, Signal, QThread, Qt, QMutex, QWaitCondition, QTimer from PySide6.QtGui import QImage, QPixmap import cv2 import time import numpy as np from datetime import datetime from collections import deque from typing import Dict, List, Optional import os import sys import math # Add parent directory to path for imports sys.path.append(os.path.dirname(os.path.dirname(os.path.abspath(__file__)))) # Import utilities from utils.annotation_utils import ( draw_detections, draw_performance_metrics, resize_frame_for_display, convert_cv_to_qimage, convert_cv_to_pixmap, pipeline_with_violation_line ) # Import enhanced annotation utilities from utils.enhanced_annotation_utils import ( enhanced_draw_detections, draw_performance_overlay, enhanced_cv_to_qimage, enhanced_cv_to_pixmap ) # Import traffic light color detection utilities from red_light_violation_pipeline import RedLightViolationPipeline from utils.traffic_light_utils import detect_traffic_light_color, draw_traffic_light_status, ensure_traffic_light_color from utils.crosswalk_utils2 import detect_crosswalk_and_violation_line, draw_violation_line, get_violation_line_y from controllers.deepsort_tracker import DeepSortVehicleTracker TRAFFIC_LIGHT_CLASSES = ["traffic light", "trafficlight", "tl"] TRAFFIC_LIGHT_NAMES = ['trafficlight', 'traffic light', 'tl', 'signal'] def normalize_class_name(class_name): """Normalizes class names from different models/formats to a standard name""" if not class_name: return "" name_lower = class_name.lower() # Traffic light variants if name_lower in ['traffic light', 'trafficlight', 'traffic_light', 'tl', 'signal']: return 'traffic light' # Keep specific vehicle classes (car, truck, bus) separate # Just normalize naming variations within each class if name_lower in ['car', 'auto', 'automobile']: return 'car' elif name_lower in ['truck']: return 'truck' elif name_lower in ['bus']: return 'bus' elif name_lower in ['motorcycle', 'scooter', 'motorbike', 'bike']: return 'motorcycle' # Person variants if name_lower in ['person', 'pedestrian', 'human']: return 'person' # Other common classes can be added here return class_name def is_traffic_light(class_name): """Helper function to check if a class name is a traffic light with normalization""" if not class_name: return False normalized = normalize_class_name(class_name) return normalized == 'traffic light' class VideoController(QObject): frame_ready = Signal(object, object, dict) # QPixmap, detections, metrics raw_frame_ready = Signal(np.ndarray, list, float) # frame, detections, fps frame_np_ready = Signal(np.ndarray) # Direct NumPy frame signal for display stats_ready = Signal(dict) # Dictionary with stats (fps, detection_time, traffic_light) violation_detected = Signal(dict) # Signal emitted when a violation is detected def __init__(self, model_manager=None): """ Initialize video controller. Args: model_manager: Model manager instance for detection and violation """ super().__init__() self._running = False self.source = None self.source_type = None self.source_fps = 0 self.performance_metrics = {} self.mutex = QMutex() # Performance tracking self.processing_times = deque(maxlen=100) # Store last 100 processing times self.fps_history = deque(maxlen=100) # Store last 100 FPS values self.start_time = time.time() self.frame_count = 0 self.actual_fps = 0.0 self.model_manager = model_manager self.inference_model = None self.tracker = None self.current_frame = None self.current_detections = [] # Traffic light state tracking self.latest_traffic_light = {"color": "unknown", "confidence": 0.0} # Vehicle tracking settings self.vehicle_history = {} # Dictionary to store vehicle position history self.vehicle_statuses = {} # Track stable movement status self.movement_threshold = 2.5 # Minimum pixel change to consider a vehicle moving self.min_confidence_threshold = 0.5 # Minimum confidence for vehicle detection # Set up violation detection try: from controllers.red_light_violation_detector import RedLightViolationDetector self.violation_detector = RedLightViolationDetector() print("✅ Red light violation detector initialized") except Exception as e: self.violation_detector = None print(f"❌ Could not initialize violation detector: {e}") # Import crosswalk detection try: self.detect_crosswalk_and_violation_line = detect_crosswalk_and_violation_line # self.draw_violation_line = draw_violation_line print("✅ Crosswalk detection utilities imported") except Exception as e: print(f"❌ Could not import crosswalk detection: {e}") self.detect_crosswalk_and_violation_line = lambda frame, *args: (None, None, {}) # self.draw_violation_line = lambda frame, *args, **kwargs: frame # Configure thread self.thread = QThread() self.moveToThread(self.thread) self.thread.started.connect(self._run) # Performance measurement self.mutex = QMutex() self.condition = QWaitCondition() self.performance_metrics = { 'FPS': 0.0, 'Detection (ms)': 0.0, 'Total (ms)': 0.0 } # Setup render timer with more aggressive settings for UI updates self.render_timer = QTimer() self.render_timer.timeout.connect(self._process_frame) # Frame buffer self.current_frame = None self.current_detections = [] self.current_violations = [] # Debug counter for monitoring frame processing self.debug_counter = 0 self.violation_frame_counter = 0 # Add counter for violation processing # Vehicle movement tracking for violation detection self.vehicle_history = {} # track_id -> deque of positions self.movement_threshold = 3 # pixels movement threshold # Initialize the traffic light color detection pipeline self.cv_violation_pipeline = RedLightViolationPipeline(debug=True) # Initialize vehicle tracker self.vehicle_tracker = DeepSortVehicleTracker() # Add red light violation system # self.red_light_violation_system = RedLightViolationSystem() def set_source(self, source): """ Set video source (file path, camera index, or URL) Args: source: Video source - can be a camera index (int), file path (str), or URL (str). If None, defaults to camera 0. Returns: bool: True if source was set successfully, False otherwise """ print(f"đŸŽŦ VideoController.set_source called with: {source} (type: {type(source)})") # Store current state was_running = self._running # Stop current processing if running if self._running: print("âšī¸ Stopping current video processing") self.stop() try: # Handle source based on type with better error messages if source is None: print("âš ī¸ Received None source, defaulting to camera 0") self.source = 0 self.source_type = "camera" elif isinstance(source, str) and source.strip(): if os.path.exists(source): # Valid file path self.source = source self.source_type = "file" print(f"📄 Source set to file: {self.source}") elif source.lower().startswith(("http://", "https://", "rtsp://", "rtmp://")): # URL stream self.source = source self.source_type = "url" print(f"🌐 Source set to URL stream: {self.source}") elif source.isdigit(): # String camera index (convert to int) self.source = int(source) self.source_type = "camera" print(f"📹 Source set to camera index: {self.source}") else: # Try as device path or special string self.source = source self.source_type = "device" print(f"📱 Source set to device path: {self.source}") elif isinstance(source, int): # Camera index self.source = source self.source_type = "camera" print(f"📹 Source set to camera index: {self.source}") else: # Unrecognized - default to camera 0 with warning print(f"âš ī¸ Unrecognized source type: {type(source)}, defaulting to camera 0") self.source = 0 self.source_type = "camera" except Exception as e: print(f"❌ Error setting source: {e}") self.source = 0 self.source_type = "camera" return False # Get properties of the source (fps, dimensions, etc) print(f"🔍 Getting properties for source: {self.source}") success = self._get_source_properties() if success: print(f"✅ Successfully configured source: {self.source} ({self.source_type})") # Emit successful source change self.stats_ready.emit({ 'source_changed': True, 'source_type': self.source_type, 'fps': self.source_fps if hasattr(self, 'source_fps') else 0, 'dimensions': f"{self.frame_width}x{self.frame_height}" if hasattr(self, 'frame_width') else "unknown" }) # Restart if previously running if was_running: print("â–ļī¸ Restarting video processing with new source") self.start() else: print(f"❌ Failed to configure source: {self.source}") # Notify UI about the error self.stats_ready.emit({ 'source_changed': False, 'error': f"Invalid video source: {self.source}", 'source_type': self.source_type, 'fps': 0, 'detection_time_ms': "0", 'traffic_light_color': {"color": "unknown", "confidence": 0.0} }) return False # Return success status return success def _get_source_properties(self): """ Get properties of video source Returns: bool: True if source was successfully opened, False otherwise """ try: print(f"🔍 Opening video source for properties check: {self.source}") cap = cv2.VideoCapture(self.source) # Verify capture opened successfully if not cap.isOpened(): print(f"❌ Failed to open video source: {self.source}") return False # Read properties self.source_fps = cap.get(cv2.CAP_PROP_FPS) if self.source_fps <= 0: print("âš ī¸ Source FPS not available, using default 30 FPS") self.source_fps = 30.0 # Default if undetectable self.frame_width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH)) self.frame_height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT)) self.frame_count = int(cap.get(cv2.CAP_PROP_FRAME_COUNT)) # Try reading a test frame to confirm source is truly working ret, test_frame = cap.read() if not ret or test_frame is None: print("âš ī¸ Could not read test frame from source") # For camera sources, try one more time with delay if self.source_type == "camera": print("🔄 Retrying camera initialization...") time.sleep(1.0) # Wait a moment for camera to initialize ret, test_frame = cap.read() if not ret or test_frame is None: print("❌ Camera initialization failed after retry") cap.release() return False else: print("❌ Could not read frames from video source") cap.release() return False # Release the capture cap.release() print(f"✅ Video source properties: {self.frame_width}x{self.frame_height}, {self.source_fps} FPS") return True except Exception as e: print(f"❌ Error getting source properties: {e}") return False return False def start(self): """Start video processing""" if not self._running: self._running = True self.start_time = time.time() self.frame_count = 0 self.debug_counter = 0 print("DEBUG: Starting video processing thread") # Start the processing thread - add more detailed debugging if not self.thread.isRunning(): print("🚀 Thread not running, starting now...") try: self.thread.start() print("✅ Thread started successfully") print(f"🔄 Thread state: running={self.thread.isRunning()}, finished={self.thread.isFinished()}") except Exception as e: print(f"❌ Failed to start thread: {e}") import traceback traceback.print_exc() else: print("âš ī¸ Thread is already running!") print(f"🔄 Thread state: running={self.thread.isRunning()}, finished={self.thread.isFinished()}") # Start the render timer with a very aggressive interval (10ms = 100fps) # This ensures we can process frames as quickly as possible print("âąī¸ Starting render timer...") self.render_timer.start(10) print("✅ Render timer started at 100Hz") def stop(self): """Stop video processing""" if self._running: print("DEBUG: Stopping video processing") self._running = False self.render_timer.stop() # Properly terminate the thread self.thread.quit() if not self.thread.wait(3000): # Wait 3 seconds max self.thread.terminate() print("WARNING: Thread termination forced") # Clear the current frame self.mutex.lock() self.current_frame = None self.mutex.unlock() print("DEBUG: Video processing stopped") def capture_snapshot(self) -> np.ndarray: """Capture current frame""" if self.current_frame is not None: return self.current_frame.copy() return None def _run(self): """Main processing loop (runs in thread)""" try: # Print the source we're trying to open print(f"DEBUG: Opening video source: {self.source} (type: {type(self.source)})") cap = None # Initialize capture variable # Try to open source with more robust error handling max_retries = 3 retry_delay = 1.0 # seconds # Function to attempt opening the source with multiple retries def try_open_source(src, retries=max_retries, delay=retry_delay): for attempt in range(1, retries + 1): print(f"đŸŽĨ Opening source (attempt {attempt}/{retries}): {src}") try: capture = cv2.VideoCapture(src) if capture.isOpened(): # Try to read a test frame to confirm it's working ret, test_frame = capture.read() if ret and test_frame is not None: print(f"✅ Source opened successfully: {src}") # Reset capture position for file sources if isinstance(src, str) and os.path.exists(src): capture.set(cv2.CAP_PROP_POS_FRAMES, 0) return capture else: print(f"âš ī¸ Source opened but couldn't read frame: {src}") capture.release() else: print(f"âš ī¸ Failed to open source: {src}") # Retry after delay if attempt < retries: print(f"Retrying in {delay:.1f} seconds...") time.sleep(delay) except Exception as e: print(f"❌ Error opening source {src}: {e}") if attempt < retries: print(f"Retrying in {delay:.1f} seconds...") time.sleep(delay) print(f"❌ Failed to open source after {retries} attempts: {src}") return None # Handle different source types if isinstance(self.source, str) and os.path.exists(self.source): # It's a valid file path print(f"📄 Opening video file: {self.source}") cap = try_open_source(self.source) elif isinstance(self.source, int) or (isinstance(self.source, str) and self.source.isdigit()): # It's a camera index camera_idx = int(self.source) if isinstance(self.source, str) else self.source print(f"📹 Opening camera with index: {camera_idx}") # For cameras, try with different backend options if it fails cap = try_open_source(camera_idx) # If failed, try with DirectShow backend on Windows if cap is None and os.name == 'nt': print("🔄 Trying camera with DirectShow backend...") cap = try_open_source(camera_idx + cv2.CAP_DSHOW) else: # Try as a string source (URL or device path) print(f"🌐 Opening source as string: {self.source}") cap = try_open_source(str(self.source)) # Check if we successfully opened the source if cap is None: print(f"❌ Failed to open video source after all attempts: {self.source}") # Notify UI about the error self.stats_ready.emit({ 'error': f"Could not open video source: {self.source}", 'fps': "0", 'detection_time_ms': "0", 'traffic_light_color': {"color": "unknown", "confidence": 0.0} }) return # Check again to ensure capture is valid if not cap or not cap.isOpened(): print(f"ERROR: Could not open video source {self.source}") # Emit a signal to notify UI about the error self.stats_ready.emit({ 'error': f"Failed to open video source: {self.source}", 'fps': "0", 'detection_time_ms': "0", 'traffic_light_color': {"color": "unknown", "confidence": 0.0} }) return # Configure frame timing based on source FPS frame_time = 1.0 / self.source_fps if self.source_fps > 0 else 0.033 prev_time = time.time() # Log successful opening print(f"SUCCESS: Video source opened: {self.source}") print(f"Source info - FPS: {self.source_fps}, Size: {self.frame_width}x{self.frame_height}") # Main processing loop frame_error_count = 0 max_consecutive_errors = 10 while self._running and cap.isOpened(): try: ret, frame = cap.read() # Add critical frame debugging print(f"🟡 Frame read attempt: ret={ret}, frame={None if frame is None else frame.shape}") if not ret or frame is None: frame_error_count += 1 print(f"âš ī¸ Frame read error ({frame_error_count}/{max_consecutive_errors})") if frame_error_count >= max_consecutive_errors: print("❌ Too many consecutive frame errors, stopping video thread") break # Skip this iteration and try again time.sleep(0.1) # Wait a bit before trying again continue # Reset the error counter if we successfully got a frame frame_error_count = 0 except Exception as e: print(f"❌ Critical error reading frame: {e}") frame_error_count += 1 if frame_error_count >= max_consecutive_errors: print("❌ Too many errors, stopping video thread") break continue # Detection and violation processing process_start = time.time() # Process detections detection_start = time.time() detections = [] if self.model_manager: detections = self.model_manager.detect(frame) # Normalize class names for consistency and check for traffic lights traffic_light_indices = [] for i, det in enumerate(detections): if 'class_name' in det: original_name = det['class_name'] normalized_name = normalize_class_name(original_name) # Keep track of traffic light indices if normalized_name == 'traffic light' or original_name == 'traffic light': traffic_light_indices.append(i) if original_name != normalized_name: print(f"📊 Normalized class name: '{original_name}' -> '{normalized_name}'") det['class_name'] = normalized_name # Ensure we have at least one traffic light for debugging if not traffic_light_indices and self.source_type == 'video': print("âš ī¸ No traffic lights detected, checking for objects that might be traffic lights...") # Try lowering the confidence threshold specifically for traffic lights # This is only for debugging purposes if self.model_manager and hasattr(self.model_manager, 'detect'): try: low_conf_detections = self.model_manager.detect(frame, conf_threshold=0.2) for det in low_conf_detections: if 'class_name' in det and det['class_name'] == 'traffic light': if det not in detections: print(f"đŸšĻ Found low confidence traffic light: {det['confidence']:.2f}") detections.append(det) except: pass detection_time = (time.time() - detection_start) * 1000 # Violation detection is disabled violation_start = time.time() violations = [] # if self.model_manager and detections: # violations = self.model_manager.detect_violations( # detections, frame, time.time() # ) violation_time = (time.time() - violation_start) * 1000 # Update tracking if available if self.model_manager: detections = self.model_manager.update_tracking(detections, frame) # If detections are returned as tuples, convert to dicts for downstream code if detections and isinstance(detections[0], tuple): # Convert (id, bbox, conf, class_id) to dict detections = [ {'id': d[0], 'bbox': d[1], 'confidence': d[2], 'class_id': d[3]} for d in detections ] # Calculate timing metrics process_time = (time.time() - process_start) * 1000 self.processing_times.append(process_time) # Update FPS now = time.time() self.frame_count += 1 elapsed = now - self.start_time if elapsed > 0: self.actual_fps = self.frame_count / elapsed fps_smoothed = 1.0 / (now - prev_time) if now > prev_time else 0 prev_time = now # Update metrics self.performance_metrics = { 'FPS': f"{fps_smoothed:.1f}", 'Detection (ms)': f"{detection_time:.1f}", 'Total (ms)': f"{process_time:.1f}" } # Store current frame data (thread-safe) self.mutex.lock() self.current_frame = frame.copy() self.current_detections = detections self.mutex.unlock() # Process frame with annotations before sending to UI annotated_frame = frame.copy() # Draw detections with bounding boxes for visual feedback if detections and len(detections) > 0: print(f"Drawing {len(detections)} detection boxes on frame") for det in detections: if 'bbox' in det: bbox = det['bbox'] x1, y1, x2, y2 = map(int, bbox) label = det.get('class_name', 'object') confidence = det.get('confidence', 0.0) # Robustness: ensure label and confidence are not None if label is None: label = 'object' if confidence is None: confidence = 0.0 class_id = det.get('class_id', -1) # Use red color if id==9 or is traffic light, else green if class_id == 9 or is_traffic_light(label): box_color = (0, 0, 255) # Red in BGR else: box_color = (0, 255, 0) # Green in BGR if 'id' in det: id_text = f"ID: {det['id']}" # Draw rectangle and label cv2.rectangle(annotated_frame, (x1, y1), (x2, y2), box_color, 2) cv2.putText(annotated_frame, f"{id_text} {label} ", (x1, y1-10), cv2.FONT_HERSHEY_SIMPLEX, 0.5, box_color, 2) # Draw vehicle ID if present # if 'id' in det: # id_text = f"ID: {det['id']}" # # Calculate text size for background # (tw, th), baseline = cv2.getTextSize(id_text, cv2.FONT_HERSHEY_SIMPLEX, 0.8, 2) # # Draw filled rectangle for background (top-left of bbox) # cv2.rectangle(annotated_frame, (x1, y1 - th - 8), (x1 + tw + 4, y1), (0, 0, 0), -1) # # Draw the ID text in bold yellow # cv2.putText(annotated_frame, id_text, (x1 + 2, y1 - 4), cv2.FONT_HERSHEY_SIMPLEX, 0.8, (0, 255, 255), 2, cv2.LINE_AA) # print(f"[DEBUG] Detection ID: {det['id']} BBOX: {bbox} CLASS: {label} CONF: {confidence:.2f}") if class_id == 9 or is_traffic_light(label): try: light_info = detect_traffic_light_color(annotated_frame, [x1, y1, x2, y2]) if light_info.get("color", "unknown") == "unknown": light_info = ensure_traffic_light_color(annotated_frame, [x1, y1, x2, y2]) det['traffic_light_color'] = light_info # Draw enhanced traffic light status annotated_frame = draw_traffic_light_status(annotated_frame, bbox, light_info) # --- Update latest_traffic_light for UI/console --- self.latest_traffic_light = light_info # Add a prominent traffic light status at the top of the frame color = light_info.get('color', 'unknown') confidence = light_info.get('confidence', 0.0) if color == 'red': status_color = (0, 0, 255) # Red status_text = f"Traffic Light: RED ({confidence:.2f})" # Draw a prominent red banner across the top banner_height = 40 cv2.rectangle(annotated_frame, (0, 0), (annotated_frame.shape[1], banner_height), (0, 0, 150), -1) # Add text font = cv2.FONT_HERSHEY_DUPLEX font_scale = 0.9 font_thickness = 2 cv2.putText(annotated_frame, status_text, (10, banner_height-12), font, font_scale, (255, 255, 255), font_thickness) except Exception as e: print(f"[WARN] Could not detect/draw traffic light color: {e}") # --- VIOLATION DETECTION LOGIC (conditional based on traffic lights or crosswalk) --- # First, check if we have traffic lights detected traffic_lights = [] has_traffic_lights = False # Handle multiple traffic lights with consensus approach for det in detections: if is_traffic_light(det.get('class_name')): has_traffic_lights = True if 'traffic_light_color' in det: light_info = det['traffic_light_color'] traffic_lights.append({'bbox': det['bbox'], 'color': light_info.get('color', 'unknown'), 'confidence': light_info.get('confidence', 0.0)}) # Determine the dominant traffic light color based on confidence if traffic_lights: # Filter to just red lights and sort by confidence red_lights = [tl for tl in traffic_lights if tl.get('color') == 'red'] if red_lights: # Use the highest confidence red light for display highest_conf_red = max(red_lights, key=lambda x: x.get('confidence', 0)) # Update the global traffic light status for consistent UI display self.latest_traffic_light = { 'color': 'red', 'confidence': highest_conf_red.get('confidence', 0.0) } # Get traffic light position for crosswalk detection traffic_light_position = None if has_traffic_lights: for det in detections: if is_traffic_light(det.get('class_name')) and 'bbox' in det: traffic_light_bbox = det['bbox'] # Extract center point from bbox for crosswalk utils x1, y1, x2, y2 = traffic_light_bbox traffic_light_position = ((x1 + x2) // 2, (y1 + y2) // 2) break # Run crosswalk detection to check if crosswalk exists try: result_frame, crosswalk_bbox, violation_line_y, debug_info = detect_crosswalk_and_violation_line( annotated_frame, traffic_light_position ) except Exception as e: print(f"[ERROR] Crosswalk detection failed: {e}") result_frame, crosswalk_bbox, violation_line_y, debug_info = annotated_frame, None, None, {} # Check if crosswalk is detected crosswalk_detected = crosswalk_bbox is not None stop_line_detected = debug_info.get('stop_line') is not None # Only proceed with violation logic if we have traffic lights OR crosswalk detected # AND every 3rd frame for performance (adjust as needed) violations = [] self.violation_frame_counter += 1 should_process_violations = (has_traffic_lights or crosswalk_detected) and (self.violation_frame_counter % 3 == 0) if should_process_violations: print(f"[DEBUG] Processing violation logic - Traffic lights: {has_traffic_lights}, Crosswalk: {crosswalk_detected}") # Create violation line coordinates from y position violation_line = None if violation_line_y is not None: start_pt = (0, violation_line_y) end_pt = (annotated_frame.shape[1], violation_line_y) violation_line = (start_pt, end_pt) # Draw the thick red violation line with black label background (like in image) line_color = (0, 0, 255) # Red color cv2.line(annotated_frame, start_pt, end_pt, line_color, 6) # Thick line # Draw black background for label label = "Violation Line" font = cv2.FONT_HERSHEY_SIMPLEX font_scale = 0.9 # Larger font thickness = 2 (text_width, text_height), baseline = cv2.getTextSize(label, font, font_scale, thickness) # Center the text on the violation line text_x = max(10, (annotated_frame.shape[1] - text_width) // 2) # Black background rectangle - centered and more prominent cv2.rectangle(annotated_frame, (text_x - 10, start_pt[1] - text_height - 15), (text_x + text_width + 10, start_pt[1] - 5), (0, 0, 0), -1) # Black background # Red text - centered cv2.putText(annotated_frame, label, (text_x, start_pt[1] - 10), font, font_scale, line_color, thickness) print(f"[DEBUG] Violation line drawn at y={start_pt[1]}, type={label}") else: print(f"[DEBUG] No valid violation line detected.") # DeepSORT tracking integration with movement detection tracked_vehicles = [] if hasattr(self, 'vehicle_tracker') and self.vehicle_tracker is not None: try: # Filter vehicle detections with stricter criteria vehicle_classes = ['car', 'truck', 'bus', 'motorcycle', 'van', 'bicycle'] # Apply multiple filters for higher quality tracking: # 1. Must be a vehicle class # 2. Must have a bbox # 3. Must meet confidence threshold # 4. Must have reasonable dimensions (not too small/large) vehicle_dets = [] h, w = frame.shape[:2] min_area_ratio = 0.001 # Min 0.1% of frame area max_area_ratio = 0.25 # Max 25% of frame area for det in detections: if (det.get('class_name') in vehicle_classes and 'bbox' in det and det.get('confidence', 0) > self.min_confidence_threshold): # Check bbox dimensions bbox = det['bbox'] x1, y1, x2, y2 = bbox box_w, box_h = x2-x1, y2-y1 box_area = box_w * box_h frame_area = w * h area_ratio = box_area / frame_area # Only include reasonably sized objects if min_area_ratio <= area_ratio <= max_area_ratio: vehicle_dets.append(det) # Pass the detection dictionaries directly to the tracker tracks = self.vehicle_tracker.update(vehicle_dets, frame) # tracks is a list of dicts: [{'id': track_id, 'bbox': [x1,y1,x2,y2], 'confidence': conf, 'class_id': class_id}, ...] for track in tracks: track_id = track['id'] bbox = track['bbox'] # Calculate vehicle center for movement tracking x1, y1, x2, y2 = map(float, bbox) center_y = (y1 + y2) / 2 # Initialize or update vehicle history if track_id not in self.vehicle_history: from collections import deque self.vehicle_history[track_id] = deque(maxlen=10) # Increased history for better movement detection self.vehicle_statuses = {} # Keep track of vehicle movement status self.vehicle_history[track_id].append(center_y) # Calculate movement - improved algorithm is_moving = False # Only analyze if we have enough history if len(self.vehicle_history[track_id]) >= 3: # Get the recent history positions recent_positions = list(self.vehicle_history[track_id]) # Calculate trend over multiple frames instead of just two frames if len(recent_positions) >= 5: # Get first half and second half positions to detect overall movement first_half = sum(recent_positions[:len(recent_positions)//2]) / (len(recent_positions)//2) second_half = sum(recent_positions[len(recent_positions)//2:]) / (len(recent_positions) - len(recent_positions)//2) # Calculate overall trend trend_movement = abs(second_half - first_half) is_moving = trend_movement > self.movement_threshold else: # Fallback to simpler calculation if not enough history prev_y = self.vehicle_history[track_id][-2] current_y = self.vehicle_history[track_id][-1] dy = abs(current_y - prev_y) is_moving = dy > self.movement_threshold # Store movement status persistently if track_id not in self.vehicle_statuses: self.vehicle_statuses[track_id] = {'is_moving': is_moving, 'stable_count': 0} else: # Update stable count based on consistency if self.vehicle_statuses[track_id]['is_moving'] == is_moving: self.vehicle_statuses[track_id]['stable_count'] += 1 else: # Only switch status if consistent for multiple frames to avoid jitter if self.vehicle_statuses[track_id]['stable_count'] >= 3: self.vehicle_statuses[track_id]['is_moving'] = is_moving self.vehicle_statuses[track_id]['stable_count'] = 0 else: is_moving = self.vehicle_statuses[track_id]['is_moving'] # Use previous state self.vehicle_statuses[track_id]['stable_count'] += 1 tracked_vehicles.append({ 'id': track_id, 'bbox': bbox, 'center_y': center_y, 'is_moving': is_moving, 'prev_y': self.vehicle_history[track_id][-2] if len(self.vehicle_history[track_id]) >= 2 else center_y }) print(f"[DEBUG] DeepSORT tracked {len(tracked_vehicles)} vehicles") except Exception as e: print(f"[ERROR] DeepSORT tracking failed: {e}") tracked_vehicles = [] else: print("[WARN] DeepSORT vehicle tracker not available!") # Red light violation detection red_lights = [] for tl in traffic_lights: if tl.get('color') == 'red': red_lights.append(tl) print(f"[DEBUG] Red light(s) detected: {len(red_lights)} red lights") vehicle_debugs = [] # Always print vehicle debug info for frames with violation logic for v in tracked_vehicles: bbox = v['bbox'] x1, y1, x2, y2 = map(int, bbox) # Convert to integers for OpenCV center_y = v['center_y'] is_moving = v['is_moving'] status = "MOVING" if is_moving else "STOPPED" vehicle_debugs.append(f"Vehicle ID={v['id']} bbox=[{x1},{y1},{x2},{y2}] center_y={center_y:.1f} status={status} vline_y={violation_line_y}") if red_lights and violation_line_y is not None: print(f"[DEBUG] Checking {len(tracked_vehicles)} tracked vehicles for violations") for v in tracked_vehicles: bbox = v['bbox'] x1, y1, x2, y2 = map(int, bbox) # Convert to integers for OpenCV # Get movement status and center position is_moving = v['is_moving'] current_y = v['center_y'] prev_y = v['prev_y'] # A violation occurs only if: # 1. Vehicle is moving (not stopped) # 2. Vehicle crossed the line (previous position was before line, current is after) crossed_line = (prev_y <= violation_line_y and current_y > violation_line_y) is_violation = is_moving and crossed_line # Differentiate visualization based on vehicle state if is_violation: # RED BOX: Violation detected - crossed line while moving during red light print(f"[DEBUG] 🚨 RED LIGHT VIOLATION: Vehicle ID={v['id']} CROSSED LINE while MOVING") print(f" Previous Y: {prev_y:.1f} -> Current Y: {current_y:.1f} (Line: {violation_line_y})") # Add to violations list with comprehensive data timestamp = datetime.now().strftime("%Y-%m-%d %H:%M:%S") violations.append({ 'track_id': v['id'], 'id': v['id'], 'bbox': [x1, y1, x2, y2], 'violation': 'red_light', 'timestamp': timestamp, 'line_position': violation_line_y, 'movement': {'prev_y': prev_y, 'current_y': current_y} }) # Red box for violators (bolder) cv2.rectangle(annotated_frame, (x1, y1), (x2, y2), (0, 0, 255), 3) # RED # Clear black background for violation label label = f'VIOLATION ID:{v["id"]}' font = cv2.FONT_HERSHEY_SIMPLEX font_scale = 0.7 thickness = 2 (text_width, text_height), _ = cv2.getTextSize(label, font, font_scale, thickness) # Draw black background for text cv2.rectangle(annotated_frame, (x1, y1-text_height-10), (x1+text_width+10, y1), (0,0,0), -1) # Draw violation text in red cv2.putText(annotated_frame, label, (x1+5, y1-10), font, font_scale, (0, 0, 255), thickness) elif is_moving: # ORANGE BOX: Moving but not violated print(f"[DEBUG] Vehicle ID={v['id']} MOVING but not violated") # Orange box for moving vehicles cv2.rectangle(annotated_frame, (x1, y1), (x2, y2), (0, 165, 255), 2) # Orange # Only show ID for moving vehicles label = f'ID:{v["id"]}' cv2.putText(annotated_frame, label, (x1, y1-10), cv2.FONT_HERSHEY_SIMPLEX, 0.6, (0, 165, 255), 2) else: # GREEN BOX: Stopped vehicle - no text needed print(f"[DEBUG] Vehicle ID={v['id']} STOPPED") # Green box for stopped vehicles (thinner) cv2.rectangle(annotated_frame, (x1, y1), (x2, y2), (0, 255, 0), 1) # Green # No text for stopped vehicles - reduces clutter if current_y > violation_line_y and not is_moving: print(f"[DEBUG] Vehicle ID={v['id']} behind line but STOPPED - No violation") elif is_moving and current_y <= violation_line_y: print(f"[DEBUG] Vehicle ID={v['id']} MOVING but before line - No violation") else: print(f"[DEBUG] Vehicle ID={v['id']} normal tracking - No violation") if not violations: print("[DEBUG] No red light violations detected this frame.") else: print(f"[DEBUG] No red light or no violation line for this frame. Red lights: {len(red_lights)}, vline_y: {violation_line_y}") # Print vehicle debug info for frames with violation logic for vdbg in vehicle_debugs: print(f"[DEBUG] {vdbg}") else: print(f"[DEBUG] Skipping violation logic - Frame {self.violation_frame_counter}: Traffic lights: {has_traffic_lights}, Crosswalk: {crosswalk_detected}") violation_line_y = None # Set to None when no violation logic runs # Emit individual violation signals for each violation if violations: for violation in violations: print(f"🚨 Emitting RED LIGHT VIOLATION: Track ID {violation['track_id']}") # Add additional data to the violation violation['frame'] = frame violation['violation_line_y'] = violation_line_y self.violation_detected.emit(violation) print(f"[DEBUG] Emitted {len(violations)} violation signals") # Add FPS display directly on frame # cv2.putText(annotated_frame, f"FPS: {fps_smoothed:.1f}", (10, 30), # cv2.FONT_HERSHEY_SIMPLEX, 1, (255, 255, 255), 2) # # --- Always draw detected traffic light color indicator at top --- # color = self.latest_traffic_light.get('color', 'unknown') if isinstance(self.latest_traffic_light, dict) else str(self.latest_traffic_light) # confidence = self.latest_traffic_light.get('confidence', 0.0) if isinstance(self.latest_traffic_light, dict) else 0.0 # indicator_size = 30 # margin = 10 # status_colors = { # "red": (0, 0, 255), # "yellow": (0, 255, 255), # "green": (0, 255, 0), # "unknown": (200, 200, 200) # } # draw_color = status_colors.get(color, (200, 200, 200)) # # Draw circle indicator # cv2.circle( # annotated_frame, # (annotated_frame.shape[1] - margin - indicator_size, margin + indicator_size), # indicator_size, # draw_color, # -1 # ) # # Add color text # cv2.putText( # annotated_frame, # f"{color.upper()} ({confidence:.2f})", # (annotated_frame.shape[1] - margin - indicator_size - 120, margin + indicator_size + 10), # cv2.FONT_HERSHEY_SIMPLEX, # 0.7, # (0, 0, 0), # 2 # ) # Signal for raw data subscribers (now without violations) # Emit with correct number of arguments try: self.raw_frame_ready.emit(frame.copy(), detections, fps_smoothed) print(f"✅ raw_frame_ready signal emitted with {len(detections)} detections, fps={fps_smoothed:.1f}") except Exception as e: print(f"❌ Error emitting raw_frame_ready: {e}") import traceback traceback.print_exc()# Emit the NumPy frame signal for direct display - annotated version for visual feedback print(f"🔴 Emitting frame_np_ready signal with annotated_frame shape: {annotated_frame.shape}") try: # Make sure the frame can be safely transmitted over Qt's signal system # Create a contiguous copy of the array frame_copy = np.ascontiguousarray(annotated_frame) print(f"🔍 Debug - Before emission: frame_copy type={type(frame_copy)}, shape={frame_copy.shape}, is_contiguous={frame_copy.flags['C_CONTIGUOUS']}") self.frame_np_ready.emit(frame_copy) print("✅ frame_np_ready signal emitted successfully") except Exception as e: print(f"❌ Error emitting frame: {e}") import traceback traceback.print_exc() # Emit stats signal for performance monitoring stats = { 'fps': fps_smoothed, 'detection_fps': fps_smoothed, # Numeric value for analytics 'detection_time': detection_time, 'detection_time_ms': detection_time, # Numeric value for analytics 'traffic_light_color': self.latest_traffic_light } # Print detailed stats for debugging tl_color = "unknown" if isinstance(self.latest_traffic_light, dict): tl_color = self.latest_traffic_light.get('color', 'unknown') elif isinstance(self.latest_traffic_light, str): tl_color = self.latest_traffic_light print(f"đŸŸĸ Stats Updated: FPS={fps_smoothed:.2f}, Inference={detection_time:.2f}ms, Traffic Light={tl_color}") # Emit stats signal self.stats_ready.emit(stats) # Control processing rate for file sources if isinstance(self.source, str) and self.source_fps > 0: frame_duration = time.time() - process_start if frame_duration < frame_time: time.sleep(frame_time - frame_duration) cap.release() except Exception as e: print(f"Video processing error: {e}") import traceback traceback.print_exc() finally: self._running = False def _process_frame(self): """Process current frame for display with improved error handling""" try: self.mutex.lock() if self.current_frame is None: print("âš ī¸ No frame available to process") self.mutex.unlock() # Check if we're running - if not, this is expected behavior if not self._running: return # If we are running but have no frame, create a blank frame with error message h, w = 480, 640 # Default size blank_frame = np.zeros((h, w, 3), dtype=np.uint8) cv2.putText(blank_frame, "No video input", (w//2-100, h//2), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 0, 255), 2) # Emit this blank frame try: self.frame_np_ready.emit(blank_frame) except Exception as e: print(f"Error emitting blank frame: {e}") return # Make a copy of the data we need try: frame = self.current_frame.copy() detections = self.current_detections.copy() if self.current_detections else [] violations = [] # Violations are disabled metrics = self.performance_metrics.copy() except Exception as e: print(f"Error copying frame data: {e}") self.mutex.unlock() return self.mutex.unlock() except Exception as e: print(f"Critical error in _process_frame initialization: {e}") import traceback traceback.print_exc() try: self.mutex.unlock() except: pass return try: # --- Simplified frame processing for display --- # The violation logic is now handled in the main _run thread # This method just handles basic display overlays annotated_frame = frame.copy() # Add performance overlays and debug markers annotated_frame = draw_performance_overlay(annotated_frame, metrics) cv2.circle(annotated_frame, (20, 20), 10, (255, 255, 0), -1) # Convert BGR to RGB before display (for PyQt/PySide) frame_rgb = cv2.cvtColor(annotated_frame, cv2.COLOR_BGR2RGB) # Display the RGB frame in the UI (replace with your display logic) # Example: self.image_label.setPixmap(QPixmap.fromImage(QImage(frame_rgb.data, w, h, QImage.Format_RGB888))) except Exception as e: print(f"Error in _process_frame: {e}") import traceback traceback.print_exc() # --- Removed unused internal violation line detection methods and RedLightViolationSystem usage --- ####BOHOT BDAIYA from PySide6.QtCore import QObject, Signal, QThread, Qt, QMutex, QWaitCondition, QTimer from PySide6.QtGui import QImage, QPixmap import cv2 import time import numpy as np from datetime import datetime from collections import deque from typing import Dict, List, Optional import os import sys import math # Add parent directory to path for imports sys.path.append(os.path.dirname(os.path.dirname(os.path.abspath(__file__)))) # Import utilities from utils.annotation_utils import ( draw_detections, draw_performance_metrics, resize_frame_for_display, convert_cv_to_qimage, convert_cv_to_pixmap, pipeline_with_violation_line ) # Import enhanced annotation utilities from utils.enhanced_annotation_utils import ( enhanced_draw_detections, draw_performance_overlay, enhanced_cv_to_qimage, enhanced_cv_to_pixmap ) # Import traffic light color detection utilities from red_light_violation_pipeline import RedLightViolationPipeline from utils.traffic_light_utils import detect_traffic_light_color, draw_traffic_light_status, ensure_traffic_light_color from utils.crosswalk_utils2 import detect_crosswalk_and_violation_line, draw_violation_line, get_violation_line_y from controllers.deepsort_tracker import DeepSortVehicleTracker TRAFFIC_LIGHT_CLASSES = ["traffic light", "trafficlight", "tl"] TRAFFIC_LIGHT_NAMES = ['trafficlight', 'traffic light', 'tl', 'signal'] def normalize_class_name(class_name): """Normalizes class names from different models/formats to a standard name""" if not class_name: return "" name_lower = class_name.lower() # Traffic light variants if name_lower in ['traffic light', 'trafficlight', 'traffic_light', 'tl', 'signal']: return 'traffic light' # Keep specific vehicle classes (car, truck, bus) separate # Just normalize naming variations within each class if name_lower in ['car', 'auto', 'automobile']: return 'car' elif name_lower in ['truck']: return 'truck' elif name_lower in ['bus']: return 'bus' elif name_lower in ['motorcycle', 'scooter', 'motorbike', 'bike']: return 'motorcycle' # Person variants if name_lower in ['person', 'pedestrian', 'human']: return 'person' # Other common classes can be added here return class_name def is_traffic_light(class_name): """Helper function to check if a class name is a traffic light with normalization""" if not class_name: return False normalized = normalize_class_name(class_name) return normalized == 'traffic light' class VideoController(QObject): frame_ready = Signal(object, object, dict) # QPixmap, detections, metrics raw_frame_ready = Signal(np.ndarray, list, float) # frame, detections, fps frame_np_ready = Signal(np.ndarray) # Direct NumPy frame signal for display stats_ready = Signal(dict) # Dictionary with stats (fps, detection_time, traffic_light) violation_detected = Signal(dict) # Signal emitted when a violation is detected def __init__(self, model_manager=None): """ Initialize video controller. Args: model_manager: Model manager instance for detection and violation """ super().__init__() self._running = False self.source = None self.source_type = None self.source_fps = 0 self.performance_metrics = {} self.mutex = QMutex() # Performance tracking self.processing_times = deque(maxlen=100) # Store last 100 processing times self.fps_history = deque(maxlen=100) # Store last 100 FPS values self.start_time = time.time() self.frame_count = 0 self.actual_fps = 0.0 self.model_manager = model_manager self.inference_model = None self.tracker = None self.current_frame = None self.current_detections = [] # Traffic light state tracking self.latest_traffic_light = {"color": "unknown", "confidence": 0.0} # Vehicle tracking settings self.vehicle_history = {} # Dictionary to store vehicle position history self.vehicle_statuses = {} # Track stable movement status self.movement_threshold = 2.5 # Minimum pixel change to consider a vehicle moving self.min_confidence_threshold = 0.5 # Minimum confidence for vehicle detection # Set up violation detection try: from controllers.red_light_violation_detector import RedLightViolationDetector self.violation_detector = RedLightViolationDetector() print("✅ Red light violation detector initialized") except Exception as e: self.violation_detector = None print(f"❌ Could not initialize violation detector: {e}") # Import crosswalk detection try: self.detect_crosswalk_and_violation_line = detect_crosswalk_and_violation_line # self.draw_violation_line = draw_violation_line print("✅ Crosswalk detection utilities imported") except Exception as e: print(f"❌ Could not import crosswalk detection: {e}") self.detect_crosswalk_and_violation_line = lambda frame, *args: (None, None, {}) # self.draw_violation_line = lambda frame, *args, **kwargs: frame # Configure thread self.thread = QThread() self.moveToThread(self.thread) self.thread.started.connect(self._run) # Performance measurement self.mutex = QMutex() self.condition = QWaitCondition() self.performance_metrics = { 'FPS': 0.0, 'Detection (ms)': 0.0, 'Total (ms)': 0.0 } # Setup render timer with more aggressive settings for UI updates self.render_timer = QTimer() self.render_timer.timeout.connect(self._process_frame) # Frame buffer self.current_frame = None self.current_detections = [] self.current_violations = [] # Debug counter for monitoring frame processing self.debug_counter = 0 self.violation_frame_counter = 0 # Add counter for violation processing # Vehicle movement tracking for violation detection self.vehicle_history = {} # track_id -> deque of positions self.movement_threshold = 3 # pixels movement threshold # Initialize the traffic light color detection pipeline self.cv_violation_pipeline = RedLightViolationPipeline(debug=True) # Initialize vehicle tracker self.vehicle_tracker = DeepSortVehicleTracker() # Add red light violation system # self.red_light_violation_system = RedLightViolationSystem() def set_source(self, source): """ Set video source (file path, camera index, or URL) Args: source: Video source - can be a camera index (int), file path (str), or URL (str). If None, defaults to camera 0. Returns: bool: True if source was set successfully, False otherwise """ print(f"đŸŽŦ VideoController.set_source called with: {source} (type: {type(source)})") # Store current state was_running = self._running # Stop current processing if running if self._running: print("âšī¸ Stopping current video processing") self.stop() try: # Handle source based on type with better error messages if source is None: print("âš ī¸ Received None source, defaulting to camera 0") self.source = 0 self.source_type = "camera" elif isinstance(source, str) and source.strip(): if os.path.exists(source): # Valid file path self.source = source self.source_type = "file" print(f"📄 Source set to file: {self.source}") elif source.lower().startswith(("http://", "https://", "rtsp://", "rtmp://")): # URL stream self.source = source self.source_type = "url" print(f"🌐 Source set to URL stream: {self.source}") elif source.isdigit(): # String camera index (convert to int) self.source = int(source) self.source_type = "camera" print(f"📹 Source set to camera index: {self.source}") else: # Try as device path or special string self.source = source self.source_type = "device" print(f"📱 Source set to device path: {self.source}") elif isinstance(source, int): # Camera index self.source = source self.source_type = "camera" print(f"📹 Source set to camera index: {self.source}") else: # Unrecognized - default to camera 0 with warning print(f"âš ī¸ Unrecognized source type: {type(source)}, defaulting to camera 0") self.source = 0 self.source_type = "camera" except Exception as e: print(f"❌ Error setting source: {e}") self.source = 0 self.source_type = "camera" return False # Get properties of the source (fps, dimensions, etc) print(f"🔍 Getting properties for source: {self.source}") success = self._get_source_properties() if success: print(f"✅ Successfully configured source: {self.source} ({self.source_type})") # Emit successful source change self.stats_ready.emit({ 'source_changed': True, 'source_type': self.source_type, 'fps': self.source_fps if hasattr(self, 'source_fps') else 0, 'dimensions': f"{self.frame_width}x{self.frame_height}" if hasattr(self, 'frame_width') else "unknown" }) # Restart if previously running if was_running: print("â–ļī¸ Restarting video processing with new source") self.start() else: print(f"❌ Failed to configure source: {self.source}") # Notify UI about the error self.stats_ready.emit({ 'source_changed': False, 'error': f"Invalid video source: {self.source}", 'source_type': self.source_type, 'fps': 0, 'detection_time_ms': "0", 'traffic_light_color': {"color": "unknown", "confidence": 0.0} }) return False # Return success status return success def _get_source_properties(self): """ Get properties of video source Returns: bool: True if source was successfully opened, False otherwise """ try: print(f"🔍 Opening video source for properties check: {self.source}") cap = cv2.VideoCapture(self.source) # Verify capture opened successfully if not cap.isOpened(): print(f"❌ Failed to open video source: {self.source}") return False # Read properties self.source_fps = cap.get(cv2.CAP_PROP_FPS) if self.source_fps <= 0: print("âš ī¸ Source FPS not available, using default 30 FPS") self.source_fps = 30.0 # Default if undetectable self.frame_width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH)) self.frame_height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT)) self.frame_count = int(cap.get(cv2.CAP_PROP_FRAME_COUNT)) # Try reading a test frame to confirm source is truly working ret, test_frame = cap.read() if not ret or test_frame is None: print("âš ī¸ Could not read test frame from source") # For camera sources, try one more time with delay if self.source_type == "camera": print("🔄 Retrying camera initialization...") time.sleep(1.0) # Wait a moment for camera to initialize ret, test_frame = cap.read() if not ret or test_frame is None: print("❌ Camera initialization failed after retry") cap.release() return False else: print("❌ Could not read frames from video source") cap.release() return False # Release the capture cap.release() print(f"✅ Video source properties: {self.frame_width}x{self.frame_height}, {self.source_fps} FPS") return True except Exception as e: print(f"❌ Error getting source properties: {e}") return False return False def start(self): """Start video processing""" if not self._running: self._running = True self.start_time = time.time() self.frame_count = 0 self.debug_counter = 0 print("DEBUG: Starting video processing thread") # Start the processing thread - add more detailed debugging if not self.thread.isRunning(): print("🚀 Thread not running, starting now...") try: self.thread.start() print("✅ Thread started successfully") print(f"🔄 Thread state: running={self.thread.isRunning()}, finished={self.thread.isFinished()}") except Exception as e: print(f"❌ Failed to start thread: {e}") import traceback traceback.print_exc() else: print("âš ī¸ Thread is already running!") print(f"🔄 Thread state: running={self.thread.isRunning()}, finished={self.thread.isFinished()}") # Start the render timer with a very aggressive interval (10ms = 100fps) # This ensures we can process frames as quickly as possible print("âąī¸ Starting render timer...") self.render_timer.start(10) print("✅ Render timer started at 100Hz") def stop(self): """Stop video processing""" if self._running: print("DEBUG: Stopping video processing") self._running = False self.render_timer.stop() # Properly terminate the thread self.thread.quit() if not self.thread.wait(3000): # Wait 3 seconds max self.thread.terminate() print("WARNING: Thread termination forced") # Clear the current frame self.mutex.lock() self.current_frame = None self.mutex.unlock() print("DEBUG: Video processing stopped") def capture_snapshot(self) -> np.ndarray: """Capture current frame""" if self.current_frame is not None: return self.current_frame.copy() return None def _run(self): """Main processing loop (runs in thread)""" try: # Print the source we're trying to open print(f"DEBUG: Opening video source: {self.source} (type: {type(self.source)})") cap = None # Initialize capture variable # Try to open source with more robust error handling max_retries = 3 retry_delay = 1.0 # seconds # Function to attempt opening the source with multiple retries def try_open_source(src, retries=max_retries, delay=retry_delay): for attempt in range(1, retries + 1): print(f"đŸŽĨ Opening source (attempt {attempt}/{retries}): {src}") try: capture = cv2.VideoCapture(src) if capture.isOpened(): # Try to read a test frame to confirm it's working ret, test_frame = capture.read() if ret and test_frame is not None: print(f"✅ Source opened successfully: {src}") # Reset capture position for file sources if isinstance(src, str) and os.path.exists(src): capture.set(cv2.CAP_PROP_POS_FRAMES, 0) return capture else: print(f"âš ī¸ Source opened but couldn't read frame: {src}") capture.release() else: print(f"âš ī¸ Failed to open source: {src}") # Retry after delay if attempt < retries: print(f"Retrying in {delay:.1f} seconds...") time.sleep(delay) except Exception as e: print(f"❌ Error opening source {src}: {e}") if attempt < retries: print(f"Retrying in {delay:.1f} seconds...") time.sleep(delay) print(f"❌ Failed to open source after {retries} attempts: {src}") return None # Handle different source types if isinstance(self.source, str) and os.path.exists(self.source): # It's a valid file path print(f"📄 Opening video file: {self.source}") cap = try_open_source(self.source) elif isinstance(self.source, int) or (isinstance(self.source, str) and self.source.isdigit()): # It's a camera index camera_idx = int(self.source) if isinstance(self.source, str) else self.source print(f"📹 Opening camera with index: {camera_idx}") # For cameras, try with different backend options if it fails cap = try_open_source(camera_idx) # If failed, try with DirectShow backend on Windows if cap is None and os.name == 'nt': print("🔄 Trying camera with DirectShow backend...") cap = try_open_source(camera_idx + cv2.CAP_DSHOW) else: # Try as a string source (URL or device path) print(f"🌐 Opening source as string: {self.source}") cap = try_open_source(str(self.source)) # Check if we successfully opened the source if cap is None: print(f"❌ Failed to open video source after all attempts: {self.source}") # Notify UI about the error self.stats_ready.emit({ 'error': f"Could not open video source: {self.source}", 'fps': "0", 'detection_time_ms': "0", 'traffic_light_color': {"color": "unknown", "confidence": 0.0} }) return # Check again to ensure capture is valid if not cap or not cap.isOpened(): print(f"ERROR: Could not open video source {self.source}") # Emit a signal to notify UI about the error self.stats_ready.emit({ 'error': f"Failed to open video source: {self.source}", 'fps': "0", 'detection_time_ms': "0", 'traffic_light_color': {"color": "unknown", "confidence": 0.0} }) return # Configure frame timing based on source FPS frame_time = 1.0 / self.source_fps if self.source_fps > 0 else 0.033 prev_time = time.time() # Log successful opening print(f"SUCCESS: Video source opened: {self.source}") print(f"Source info - FPS: {self.source_fps}, Size: {self.frame_width}x{self.frame_height}") # Main processing loop frame_error_count = 0 max_consecutive_errors = 10 while self._running and cap.isOpened(): try: ret, frame = cap.read() # Add critical frame debugging print(f"🟡 Frame read attempt: ret={ret}, frame={None if frame is None else frame.shape}") if not ret or frame is None: frame_error_count += 1 print(f"âš ī¸ Frame read error ({frame_error_count}/{max_consecutive_errors})") if frame_error_count >= max_consecutive_errors: print("❌ Too many consecutive frame errors, stopping video thread") break # Skip this iteration and try again time.sleep(0.1) # Wait a bit before trying again continue # Reset the error counter if we successfully got a frame frame_error_count = 0 except Exception as e: print(f"❌ Critical error reading frame: {e}") frame_error_count += 1 if frame_error_count >= max_consecutive_errors: print("❌ Too many errors, stopping video thread") break continue # Detection and violation processing process_start = time.time() # Process detections detection_start = time.time() detections = [] if self.model_manager: detections = self.model_manager.detect(frame) # Normalize class names for consistency and check for traffic lights traffic_light_indices = [] for i, det in enumerate(detections): if 'class_name' in det: original_name = det['class_name'] normalized_name = normalize_class_name(original_name) # Keep track of traffic light indices if normalized_name == 'traffic light' or original_name == 'traffic light': traffic_light_indices.append(i) if original_name != normalized_name: print(f"📊 Normalized class name: '{original_name}' -> '{normalized_name}'") det['class_name'] = normalized_name # Ensure we have at least one traffic light for debugging if not traffic_light_indices and self.source_type == 'video': print("âš ī¸ No traffic lights detected, checking for objects that might be traffic lights...") # Try lowering the confidence threshold specifically for traffic lights # This is only for debugging purposes if self.model_manager and hasattr(self.model_manager, 'detect'): try: low_conf_detections = self.model_manager.detect(frame, conf_threshold=0.2) for det in low_conf_detections: if 'class_name' in det and det['class_name'] == 'traffic light': if det not in detections: print(f"đŸšĻ Found low confidence traffic light: {det['confidence']:.2f}") detections.append(det) except: pass detection_time = (time.time() - detection_start) * 1000 # Violation detection is disabled violation_start = time.time() violations = [] # if self.model_manager and detections: # violations = self.model_manager.detect_violations( # detections, frame, time.time() # ) violation_time = (time.time() - violation_start) * 1000 # Update tracking if available if self.model_manager: detections = self.model_manager.update_tracking(detections, frame) # If detections are returned as tuples, convert to dicts for downstream code if detections and isinstance(detections[0], tuple): # Convert (id, bbox, conf, class_id) to dict detections = [ {'id': d[0], 'bbox': d[1], 'confidence': d[2], 'class_id': d[3]} for d in detections ] # Calculate timing metrics process_time = (time.time() - process_start) * 1000 self.processing_times.append(process_time) # Update FPS now = time.time() self.frame_count += 1 elapsed = now - self.start_time if elapsed > 0: self.actual_fps = self.frame_count / elapsed fps_smoothed = 1.0 / (now - prev_time) if now > prev_time else 0 prev_time = now # Update metrics self.performance_metrics = { 'FPS': f"{fps_smoothed:.1f}", 'Detection (ms)': f"{detection_time:.1f}", 'Total (ms)': f"{process_time:.1f}" } # Store current frame data (thread-safe) self.mutex.lock() self.current_frame = frame.copy() self.current_detections = detections self.mutex.unlock() # Process frame with annotations before sending to UI annotated_frame = frame.copy() # Draw detections with bounding boxes for visual feedback if detections and len(detections) > 0: # Only show traffic light and vehicle classes allowed_classes = ['traffic light', 'car', 'truck', 'bus', 'motorcycle', 'van', 'bicycle'] filtered_detections = [det for det in detections if det.get('class_name') in allowed_classes] print(f"Drawing {len(filtered_detections)} detection boxes on frame (filtered)") for det in filtered_detections: if 'bbox' in det: bbox = det['bbox'] x1, y1, x2, y2 = map(int, bbox) label = det.get('class_name', 'object') confidence = det.get('confidence', 0.0) # Robustness: ensure label and confidence are not None if label is None: label = 'object' if confidence is None: confidence = 0.0 class_id = det.get('class_id', -1) # Use red color if id==9 or is traffic light, else green if class_id == 9 or is_traffic_light(label): box_color = (0, 0, 255) # Red in BGR else: box_color = (0, 255, 0) # Green in BGR if 'id' in det: id_text = f"ID: {det['id']}" # Draw rectangle and label cv2.rectangle(annotated_frame, (x1, y1), (x2, y2), box_color, 2) cv2.putText(annotated_frame, f"{id_text} {label} ", (x1, y1-10), cv2.FONT_HERSHEY_SIMPLEX, 0.5, box_color, 2) # Draw vehicle ID if present # if 'id' in det: # id_text = f"ID: {det['id']}" # # Calculate text size for background # (tw, th), baseline = cv2.getTextSize(id_text, cv2.FONT_HERSHEY_SIMPLEX, 0.8, 2) # # Draw filled rectangle for background (top-left of bbox) # cv2.rectangle(annotated_frame, (x1, y1 - th - 8), (x1 + tw + 4, y1), (0, 0, 0), -1) # # Draw the ID text in bold yellow # cv2.putText(annotated_frame, id_text, (x1 + 2, y1 - 4), cv2.FONT_HERSHEY_SIMPLEX, 0.8, (0, 255, 255), 2, cv2.LINE_AA) # print(f"[DEBUG] Detection ID: {det['id']} BBOX: {bbox} CLASS: {label} CONF: {confidence:.2f}") if class_id == 9 or is_traffic_light(label): try: light_info = detect_traffic_light_color(annotated_frame, [x1, y1, x2, y2]) if light_info.get("color", "unknown") == "unknown": light_info = ensure_traffic_light_color(annotated_frame, [x1, y1, x2, y2]) det['traffic_light_color'] = light_info # Draw enhanced traffic light status annotated_frame = draw_traffic_light_status(annotated_frame, bbox, light_info) # --- Update latest_traffic_light for UI/console --- self.latest_traffic_light = light_info # Add a prominent traffic light status at the top of the frame color = light_info.get('color', 'unknown') confidence = light_info.get('confidence', 0.0) if color == 'red': status_color = (0, 0, 255) # Red status_text = f"Traffic Light: RED ({confidence:.2f})" # Draw a prominent red banner across the top banner_height = 40 cv2.rectangle(annotated_frame, (0, 0), (annotated_frame.shape[1], banner_height), (0, 0, 150), -1) # Add text font = cv2.FONT_HERSHEY_DUPLEX font_scale = 0.9 font_thickness = 2 cv2.putText(annotated_frame, status_text, (10, banner_height-12), font, font_scale, (255, 255, 255), font_thickness) except Exception as e: print(f"[WARN] Could not detect/draw traffic light color: {e}") # --- VIOLATION DETECTION LOGIC (conditional based on traffic lights or crosswalk) --- # First, check if we have traffic lights detected traffic_lights = [] has_traffic_lights = False # Handle multiple traffic lights with consensus approach for det in detections: if is_traffic_light(det.get('class_name')): has_traffic_lights = True if 'traffic_light_color' in det: light_info = det['traffic_light_color'] traffic_lights.append({'bbox': det['bbox'], 'color': light_info.get('color', 'unknown'), 'confidence': light_info.get('confidence', 0.0)}) # Determine the dominant traffic light color based on confidence if traffic_lights: # Filter to just red lights and sort by confidence red_lights = [tl for tl in traffic_lights if tl.get('color') == 'red'] if red_lights: # Use the highest confidence red light for display highest_conf_red = max(red_lights, key=lambda x: x.get('confidence', 0)) # Update the global traffic light status for consistent UI display self.latest_traffic_light = { 'color': 'red', 'confidence': highest_conf_red.get('confidence', 0.0) } # Get traffic light position for crosswalk detection traffic_light_position = None if has_traffic_lights: for det in detections: if is_traffic_light(det.get('class_name')) and 'bbox' in det: traffic_light_bbox = det['bbox'] # Extract center point from bbox for crosswalk utils x1, y1, x2, y2 = traffic_light_bbox traffic_light_position = ((x1 + x2) // 2, (y1 + y2) // 2) break # Run crosswalk detection to check if crosswalk exists try: result_frame, crosswalk_bbox, violation_line_y, debug_info = detect_crosswalk_and_violation_line( annotated_frame, traffic_light_position ) except Exception as e: print(f"[ERROR] Crosswalk detection failed: {e}") result_frame, crosswalk_bbox, violation_line_y, debug_info = annotated_frame, None, None, {} # Check if crosswalk is detected crosswalk_detected = crosswalk_bbox is not None stop_line_detected = debug_info.get('stop_line') is not None # Only proceed with violation logic if we have traffic lights OR crosswalk detected # AND every 3rd frame for performance (adjust as needed) violations = [] self.violation_frame_counter += 1 should_process_violations = (has_traffic_lights or crosswalk_detected) and (self.violation_frame_counter % 3 == 0) if should_process_violations: print(f"[DEBUG] Processing violation logic - Traffic lights: {has_traffic_lights}, Crosswalk: {crosswalk_detected}") # Create violation line coordinates from y position # violation_line = None # if violation_line_y is not None: # start_pt = (0, violation_line_y) # end_pt = (annotated_frame.shape[1], violation_line_y) # violation_line = (start_pt, end_pt) # # Draw the thick red violation line with black label background (like in image) # line_color = (0, 0, 255) # Red color # cv2.line(annotated_frame, start_pt, end_pt, line_color, 6) # Thick line # # Draw black background for label # label = "Violation Line" # font = cv2.FONT_HERSHEY_SIMPLEX # font_scale = 0.9 # Larger font # thickness = 2 # (text_width, text_height), baseline = cv2.getTextSize(label, font, font_scale, thickness) # # Center the text on the violation line # text_x = max(10, (annotated_frame.shape[1] - text_width) // 2) # # Black background rectangle - centered and more prominent # cv2.rectangle(annotated_frame, # (text_x - 10, start_pt[1] - text_height - 15), # (text_x + text_width + 10, start_pt[1] - 5), # (0, 0, 0), -1) # Black background # # Red text - centered # cv2.putText(annotated_frame, label, (text_x, start_pt[1] - 10), # font, font_scale, line_color, thickness) # print(f"[DEBUG] Violation line drawn at y={start_pt[1]}, type={label}") # else: # print(f"[DEBUG] No valid violation line detected.") # DeepSORT tracking integration with movement detection tracked_vehicles = [] if hasattr(self, 'vehicle_tracker') and self.vehicle_tracker is not None: try: # Filter vehicle detections with stricter criteria vehicle_classes = ['car', 'truck', 'bus', 'motorcycle', 'van', 'bicycle'] # Apply multiple filters for higher quality tracking: # 1. Must be a vehicle class # 2. Must have a bbox # 3. Must meet confidence threshold # 4. Must have reasonable dimensions (not too small/large) vehicle_dets = [] h, w = frame.shape[:2] min_area_ratio = 0.001 # Min 0.1% of frame area max_area_ratio = 0.25 # Max 25% of frame area for det in detections: if (det.get('class_name') in vehicle_classes and 'bbox' in det and det.get('confidence', 0) > self.min_confidence_threshold): # Check bbox dimensions bbox = det['bbox'] x1, y1, x2, y2 = bbox box_w, box_h = x2-x1, y2-y1 box_area = box_w * box_h frame_area = w * h area_ratio = box_area / frame_area # Only include reasonably sized objects if min_area_ratio <= area_ratio <= max_area_ratio: vehicle_dets.append(det) # Pass the detection dictionaries directly to the tracker tracks = self.vehicle_tracker.update(vehicle_dets, frame) # tracks is a list of dicts: [{'id': track_id, 'bbox': [x1,y1,x2,y2], 'confidence': conf, 'class_id': class_id}, ...] for track in tracks: track_id = track['id'] bbox = track['bbox'] # Calculate vehicle center for movement tracking x1, y1, x2, y2 = map(float, bbox) center_y = (y1 + y2) / 2 # Initialize or update vehicle history if track_id not in self.vehicle_history: from collections import deque self.vehicle_history[track_id] = deque(maxlen=10) # Increased history for better movement detection self.vehicle_statuses = {} # Keep track of vehicle movement status self.vehicle_history[track_id].append(center_y) # Calculate movement - improved algorithm is_moving = False # Only analyze if we have enough history if len(self.vehicle_history[track_id]) >= 3: # Get the recent history positions recent_positions = list(self.vehicle_history[track_id]) # Calculate trend over multiple frames instead of just two frames if len(recent_positions) >= 5: # Get first half and second half positions to detect overall movement first_half = sum(recent_positions[:len(recent_positions)//2]) / (len(recent_positions)//2) second_half = sum(recent_positions[len(recent_positions)//2:]) / (len(recent_positions) - len(recent_positions)//2) # Calculate overall trend trend_movement = abs(second_half - first_half) is_moving = trend_movement > self.movement_threshold else: # Fallback to simpler calculation if not enough history prev_y = self.vehicle_history[track_id][-2] current_y = self.vehicle_history[track_id][-1] dy = abs(current_y - prev_y) is_moving = dy > self.movement_threshold # Store movement status persistently if track_id not in self.vehicle_statuses: self.vehicle_statuses[track_id] = {'is_moving': is_moving, 'stable_count': 0} else: # Update stable count based on consistency if self.vehicle_statuses[track_id]['is_moving'] == is_moving: self.vehicle_statuses[track_id]['stable_count'] += 1 else: # Only switch status if consistent for multiple frames to avoid jitter if self.vehicle_statuses[track_id]['stable_count'] >= 3: self.vehicle_statuses[track_id]['is_moving'] = is_moving self.vehicle_statuses[track_id]['stable_count'] = 0 else: is_moving = self.vehicle_statuses[track_id]['is_moving'] # Use previous state self.vehicle_statuses[track_id]['stable_count'] += 1 tracked_vehicles.append({ 'id': track_id, 'bbox': bbox, 'center_y': center_y, 'is_moving': is_moving, 'prev_y': self.vehicle_history[track_id][-2] if len(self.vehicle_history[track_id]) >= 2 else center_y }) print(f"[DEBUG] DeepSORT tracked {len(tracked_vehicles)} vehicles") except Exception as e: print(f"[ERROR] DeepSORT tracking failed: {e}") tracked_vehicles = [] else: print("[WARN] DeepSORT vehicle tracker not available!") # Red light violation detection red_lights = [] for tl in traffic_lights: if tl.get('color') == 'red': red_lights.append(tl) print(f"[DEBUG] Red light(s) detected: {len(red_lights)} red lights") vehicle_debugs = [] # Always print vehicle debug info for frames with violation logic for v in tracked_vehicles: bbox = v['bbox'] x1, y1, x2, y2 = map(int, bbox) # Convert to integers for OpenCV center_y = v['center_y'] is_moving = v['is_moving'] status = "MOVING" if is_moving else "STOPPED" vehicle_debugs.append(f"Vehicle ID={v['id']} bbox=[{x1},{y1},{x2},{y2}] center_y={center_y:.1f} status={status} vline_y={violation_line_y}") if red_lights and violation_line_y is not None: print(f"[DEBUG] Checking {len(tracked_vehicles)} tracked vehicles for violations") for v in tracked_vehicles: bbox = v['bbox'] x1, y1, x2, y2 = map(int, bbox) # Convert to integers for OpenCV # Get movement status and center position is_moving = v['is_moving'] current_y = v['center_y'] prev_y = v['prev_y'] # A violation occurs only if: # 1. Vehicle is moving (not stopped) # 2. Vehicle crossed the line (previous position was before line, current is after) crossed_line = (prev_y <= violation_line_y and current_y > violation_line_y) is_violation = is_moving and crossed_line # Differentiate visualization based on vehicle state if is_violation: # RED BOX: Violation detected - crossed line while moving during red light print(f"[DEBUG] 🚨 RED LIGHT VIOLATION: Vehicle ID={v['id']} CROSSED LINE while MOVING") print(f" Previous Y: {prev_y:.1f} -> Current Y: {current_y:.1f} (Line: {violation_line_y})") # Add to violations list with comprehensive data timestamp = datetime.now().strftime("%Y-%m-%d %H:%M:%S") violations.append({ 'track_id': v['id'], 'id': v['id'], 'bbox': [x1, y1, x2, y2], 'violation': 'red_light', 'timestamp': timestamp, 'line_position': violation_line_y, 'movement': {'prev_y': prev_y, 'current_y': current_y} }) # Red box for violators (bolder) cv2.rectangle(annotated_frame, (x1, y1), (x2, y2), (0, 0, 255), 3) # RED # Clear black background for violation label label = f'VIOLATION ID:{v["id"]}' font = cv2.FONT_HERSHEY_SIMPLEX font_scale = 0.7 thickness = 2 (text_width, text_height), _ = cv2.getTextSize(label, font, font_scale, thickness) # Draw black background for text cv2.rectangle(annotated_frame, (x1, y1-text_height-10), (x1+text_width+10, y1), (0,0,0), -1) # Draw violation text in red cv2.putText(annotated_frame, label, (x1+5, y1-10), font, font_scale, (0, 0, 255), thickness) elif is_moving: # ORANGE BOX: Moving but not violated print(f"[DEBUG] Vehicle ID={v['id']} MOVING but not violated") # Orange box for moving vehicles cv2.rectangle(annotated_frame, (x1, y1), (x2, y2), (0, 165, 255), 2) # Orange # Only show ID for moving vehicles label = f'ID:{v["id"]}' cv2.putText(annotated_frame, label, (x1, y1-10), cv2.FONT_HERSHEY_SIMPLEX, 0.6, (0, 165, 255), 2) else: # # GREEN BOX: Stopped vehicle - no text needed # print(f"[DEBUG] Vehicle ID={v['id']} STOPPED") # # Green box for stopped vehicles (thinner) # cv2.rectangle(annotated_frame, (x1, y1), (x2, y2), (0, 255, 0), 1) # Green # No text for stopped vehicles - reduces clutter if current_y > violation_line_y and not is_moving: print(f"[DEBUG] Vehicle ID={v['id']} behind line but STOPPED - No violation") elif is_moving and current_y <= violation_line_y: print(f"[DEBUG] Vehicle ID={v['id']} MOVING but before line - No violation") else: print(f"[DEBUG] Vehicle ID={v['id']} normal tracking - No violation") if not violations: print("[DEBUG] No red light violations detected this frame.") else: print(f"[DEBUG] No red light or no violation line for this frame. Red lights: {len(red_lights)}, vline_y: {violation_line_y}") # Print vehicle debug info for frames with violation logic for vdbg in vehicle_debugs: print(f"[DEBUG] {vdbg}") else: print(f"[DEBUG] Skipping violation logic - Frame {self.violation_frame_counter}: Traffic lights: {has_traffic_lights}, Crosswalk: {crosswalk_detected}") violation_line_y = None # Set to None when no violation logic runs # Emit individual violation signals for each violation if violations: for violation in violations: print(f"🚨 Emitting RED LIGHT VIOLATION: Track ID {violation['track_id']}") # Add additional data to the violation violation['frame'] = frame violation['violation_line_y'] = violation_line_y self.violation_detected.emit(violation) print(f"[DEBUG] Emitted {len(violations)} violation signals") # Add FPS display directly on frame # cv2.putText(annotated_frame, f"FPS: {fps_smoothed:.1f}", (10, 30), # cv2.FONT_HERSHEY_SIMPLEX, 1, (255, 255, 255), 2) # # --- Always draw detected traffic light color indicator at top --- # color = self.latest_traffic_light.get('color', 'unknown') if isinstance(self.latest_traffic_light, dict) else str(self.latest_traffic_light) # confidence = self.latest_traffic_light.get('confidence', 0.0) if isinstance(self.latest_traffic_light, dict) else 0.0 # indicator_size = 30 # margin = 10 # status_colors = { # "red": (0, 0, 255), # "yellow": (0, 255, 255), # "green": (0, 255, 0), # "unknown": (200, 200, 200) # } # draw_color = status_colors.get(color, (200, 200, 200)) # # Draw circle indicator # cv2.circle( # annotated_frame, # (annotated_frame.shape[1] - margin - indicator_size, margin + indicator_size), # indicator_size, # draw_color, # -1 # ) # # Add color text # cv2.putText( # annotated_frame, # f"{color.upper()} ({confidence:.2f})", # (annotated_frame.shape[1] - margin - indicator_size - 120, margin + indicator_size + 10), # cv2.FONT_HERSHEY_SIMPLEX, # 0.7, # (0, 0, 0), # 2 # ) # Signal for raw data subscribers (now without violations) # Emit with correct number of arguments try: self.raw_frame_ready.emit(frame.copy(), detections, fps_smoothed) print(f"✅ raw_frame_ready signal emitted with {len(detections)} detections, fps={fps_smoothed:.1f}") except Exception as e: print(f"❌ Error emitting raw_frame_ready: {e}") import traceback traceback.print_exc()# Emit the NumPy frame signal for direct display - annotated version for visual feedback print(f"🔴 Emitting frame_np_ready signal with annotated_frame shape: {annotated_frame.shape}") try: # Make sure the frame can be safely transmitted over Qt's signal system # Create a contiguous copy of the array frame_copy = np.ascontiguousarray(annotated_frame) print(f"🔍 Debug - Before emission: frame_copy type={type(frame_copy)}, shape={frame_copy.shape}, is_contiguous={frame_copy.flags['C_CONTIGUOUS']}") self.frame_np_ready.emit(frame_copy) print("✅ frame_np_ready signal emitted successfully") except Exception as e: print(f"❌ Error emitting frame: {e}") import traceback traceback.print_exc() # Emit stats signal for performance monitoring stats = { 'fps': fps_smoothed, 'detection_fps': fps_smoothed, # Numeric value for analytics 'detection_time': detection_time, 'detection_time_ms': detection_time, # Numeric value for analytics 'traffic_light_color': self.latest_traffic_light } # Print detailed stats for debugging tl_color = "unknown" if isinstance(self.latest_traffic_light, dict): tl_color = self.latest_traffic_light.get('color', 'unknown') elif isinstance(self.latest_traffic_light, str): tl_color = self.latest_traffic_light print(f"đŸŸĸ Stats Updated: FPS={fps_smoothed:.2f}, Inference={detection_time:.2f}ms, Traffic Light={tl_color}") # Emit stats signal self.stats_ready.emit(stats) # Control processing rate for file sources if isinstance(self.source, str) and self.source_fps > 0: frame_duration = time.time() - process_start if frame_duration < frame_time: time.sleep(frame_time - frame_duration) cap.release() except Exception as e: print(f"Video processing error: {e}") import traceback traceback.print_exc() finally: self._running = False def _process_frame(self): """Process current frame for display with improved error handling""" try: self.mutex.lock() if self.current_frame is None: print("âš ī¸ No frame available to process") self.mutex.unlock() # Check if we're running - if not, this is expected behavior if not self._running: return # If we are running but have no frame, create a blank frame with error message h, w = 480, 640 # Default size blank_frame = np.zeros((h, w, 3), dtype=np.uint8) cv2.putText(blank_frame, "No video input", (w//2-100, h//2), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 0, 255), 2) # Emit this blank frame try: self.frame_np_ready.emit(blank_frame) except Exception as e: print(f"Error emitting blank frame: {e}") return # Make a copy of the data we need try: frame = self.current_frame.copy() detections = self.current_detections.copy() if self.current_detections else [] violations = [] # Violations are disabled metrics = self.performance_metrics.copy() except Exception as e: print(f"Error copying frame data: {e}") self.mutex.unlock() return self.mutex.unlock() except Exception as e: print(f"Critical error in _process_frame initialization: {e}") import traceback traceback.print_exc() try: self.mutex.unlock() except: pass return try: # --- Simplified frame processing for display --- # The violation logic is now handled in the main _run thread # This method just handles basic display overlays annotated_frame = frame.copy() # Add performance overlays and debug markers annotated_frame = draw_performance_overlay(annotated_frame, metrics) cv2.circle(annotated_frame, (20, 20), 10, (255, 255, 0), -1) # Convert BGR to RGB before display (for PyQt/PySide) frame_rgb = cv2.cvtColor(annotated_frame, cv2.COLOR_BGR2RGB) # Display the RGB frame in the UI (replace with your display logic) # Example: self.image_label.setPixmap(QPixmap.fromImage(QImage(frame_rgb.data, w, h, QImage.Format_RGB888))) except Exception as e: print(f"Error in _process_frame: {e}") import traceback traceback.print_exc() # --- Removed unused internal violation line detection methods and RedLightViolationSystem usage --- from PySide6.QtCore import QObject, Signal, QThread, Qt, QMutex, QWaitCondition, QTimer from PySide6.QtGui import QImage, QPixmap import cv2 import time import numpy as np from datetime import datetime from collections import deque from typing import Dict, List, Optional import os import sys import math # Add parent directory to path for imports sys.path.append(os.path.dirname(os.path.dirname(os.path.abspath(__file__)))) # Import utilities from utils.annotation_utils import ( draw_detections, draw_performance_metrics, resize_frame_for_display, convert_cv_to_qimage, convert_cv_to_pixmap, pipeline_with_violation_line ) # Import enhanced annotation utilities from utils.enhanced_annotation_utils import ( enhanced_draw_detections, draw_performance_overlay, enhanced_cv_to_qimage, enhanced_cv_to_pixmap ) # Import traffic light color detection utilities from red_light_violation_pipeline import RedLightViolationPipeline from utils.traffic_light_utils import detect_traffic_light_color, draw_traffic_light_status, ensure_traffic_light_color from utils.crosswalk_utils2 import detect_crosswalk_and_violation_line, draw_violation_line, get_violation_line_y from controllers.bytetrack_tracker import ByteTrackVehicleTracker TRAFFIC_LIGHT_CLASSES = ["traffic light", "trafficlight", "tl"] TRAFFIC_LIGHT_NAMES = ['trafficlight', 'traffic light', 'tl', 'signal'] def normalize_class_name(class_name): """Normalizes class names from different models/formats to a standard name""" if not class_name: return "" name_lower = class_name.lower() # Traffic light variants if name_lower in ['traffic light', 'trafficlight', 'traffic_light', 'tl', 'signal']: return 'traffic light' # Keep specific vehicle classes (car, truck, bus) separate # Just normalize naming variations within each class if name_lower in ['car', 'auto', 'automobile']: return 'car' elif name_lower in ['truck']: return 'truck' elif name_lower in ['bus']: return 'bus' elif name_lower in ['motorcycle', 'scooter', 'motorbike', 'bike']: return 'motorcycle' # Person variants if name_lower in ['person', 'pedestrian', 'human']: return 'person' # Other common classes can be added here return class_name def is_traffic_light(class_name): """Helper function to check if a class name is a traffic light with normalization""" if not class_name: return False normalized = normalize_class_name(class_name) return normalized == 'traffic light' class VideoController(QObject): frame_ready = Signal(object, object, dict) # QPixmap, detections, metrics raw_frame_ready = Signal(np.ndarray, list, float) # frame, detections, fps frame_np_ready = Signal(np.ndarray) # Direct NumPy frame signal for display stats_ready = Signal(dict) # Dictionary with stats (fps, detection_time, traffic_light) violation_detected = Signal(dict) # Signal emitted when a violation is detected progress_ready = Signal(int, int, float) # value, max_value, timestamp def __init__(self, model_manager=None): """ Initialize video controller. Args: model_manager: Model manager instance for detection and violation """ super().__init__() print("Loaded advanced VideoController from video_controller_new.py") # DEBUG: Confirm correct controller self._running = False self.source = None self.source_type = None self.source_fps = 0 self.performance_metrics = {} self.mutex = QMutex() # Performance tracking self.processing_times = deque(maxlen=100) # Store last 100 processing times self.fps_history = deque(maxlen=100) # Store last 100 FPS values self.start_time = time.time() self.frame_count = 0 self.actual_fps = 0.0 self.model_manager = model_manager self.inference_model = None self.tracker = None self.current_frame = None self.current_detections = [] # Traffic light state tracking self.latest_traffic_light = {"color": "unknown", "confidence": 0.0} # Vehicle tracking settings self.vehicle_history = {} # Dictionary to store vehicle position history self.vehicle_statuses = {} # Track stable movement status self.movement_threshold = 1.5 # ADJUSTED: More balanced movement detection (was 0.8) self.min_confidence_threshold = 0.3 # FIXED: Lower threshold for better detection (was 0.5) # Enhanced violation detection settings self.position_history_size = 20 # Increased from 10 to track longer history self.crossing_check_window = 8 # Check for crossings over the last 8 frames instead of just 2 self.max_position_jump = 50 # Maximum allowed position jump between frames (detect ID switches) # Set up violation detection try: from controllers.red_light_violation_detector import RedLightViolationDetector self.violation_detector = RedLightViolationDetector() print("✅ Red light violation detector initialized") except Exception as e: self.violation_detector = None print(f"❌ Could not initialize violation detector: {e}") # Import crosswalk detection try: self.detect_crosswalk_and_violation_line = detect_crosswalk_and_violation_line # self.draw_violation_line = draw_violation_line print("✅ Crosswalk detection utilities imported") except Exception as e: print(f"❌ Could not import crosswalk detection: {e}") self.detect_crosswalk_and_violation_line = lambda frame, *args: (None, None, {}) # self.draw_violation_line = lambda frame, *args, **kwargs: frame # Configure thread self.thread = QThread() self.moveToThread(self.thread) self.thread.started.connect(self._run) # Performance measurement self.mutex = QMutex() self.condition = QWaitCondition() self.performance_metrics = { 'FPS': 0.0, 'Detection (ms)': 0.0, 'Total (ms)': 0.0 } # Setup render timer with more aggressive settings for UI updates self.render_timer = QTimer() self.render_timer.timeout.connect(self._process_frame) # Frame buffer self.current_frame = None self.current_detections = [] self.current_violations = [] # Debug counter for monitoring frame processing self.debug_counter = 0 self.violation_frame_counter = 0 # Add counter for violation processing # Initialize the traffic light color detection pipeline self.cv_violation_pipeline = RedLightViolationPipeline(debug=True) # Initialize vehicle tracker self.vehicle_tracker = ByteTrackVehicleTracker() # Add red light violation system # self.red_light_violation_system = RedLightViolationSystem() def set_source(self, source): """ Set video source (file path, camera index, or URL) Args: source: Video source - can be a camera index (int), file path (str), or URL (str). If None, defaults to camera 0. Returns: bool: True if source was set successfully, False otherwise """ print(f"đŸŽŦ VideoController.set_source called with: {source} (type: {type(source)})") # Store current state was_running = self._running # Stop current processing if running if self._running: print("âšī¸ Stopping current video processing") self.stop() try: # Handle source based on type with better error messages if source is None: print("âš ī¸ Received None source, defaulting to camera 0") self.source = 0 self.source_type = "camera" elif isinstance(source, str) and source.strip(): if os.path.exists(source): # Valid file path self.source = source self.source_type = "file" print(f"📄 Source set to file: {self.source}") elif source.lower().startswith(("http://", "https://", "rtsp://", "rtmp://")): # URL stream self.source = source self.source_type = "url" print(f"🌐 Source set to URL stream: {self.source}") elif source.isdigit(): # String camera index (convert to int) self.source = int(source) self.source_type = "camera" print(f"📹 Source set to camera index: {self.source}") else: # Try as device path or special string self.source = source self.source_type = "device" print(f"📱 Source set to device path: {self.source}") elif isinstance(source, int): # Camera index self.source = source self.source_type = "camera" print(f"📹 Source set to camera index: {self.source}") else: # Unrecognized - default to camera 0 with warning print(f"âš ī¸ Unrecognized source type: {type(source)}, defaulting to camera 0") self.source = 0 self.source_type = "camera" except Exception as e: print(f"❌ Error setting source: {e}") self.source = 0 self.source_type = "camera" return False # Get properties of the source (fps, dimensions, etc) print(f"🔍 Getting properties for source: {self.source}") success = self._get_source_properties() if success: print(f"✅ Successfully configured source: {self.source} ({self.source_type})") # Reset ByteTrack tracker for new source to ensure IDs start from 1 if hasattr(self, 'vehicle_tracker') and self.vehicle_tracker is not None: try: print("🔄 Resetting vehicle tracker for new source") self.vehicle_tracker.reset() except Exception as e: print(f"âš ī¸ Could not reset vehicle tracker: {e}") # Emit successful source change self.stats_ready.emit({ 'source_changed': True, 'source_type': self.source_type, 'fps': self.source_fps if hasattr(self, 'source_fps') else 0, 'dimensions': f"{self.frame_width}x{self.frame_height}" if hasattr(self, 'frame_width') else "unknown" }) # Restart if previously running if was_running: print("â–ļī¸ Restarting video processing with new source") self.start() else: print(f"❌ Failed to configure source: {self.source}") # Notify UI about the error self.stats_ready.emit({ 'source_changed': False, 'error': f"Invalid video source: {self.source}", 'source_type': self.source_type, 'fps': 0, 'detection_time_ms': "0", 'traffic_light_color': {"color": "unknown", "confidence": 0.0} }) return False # Return success status return success def _get_source_properties(self): """ Get properties of video source Returns: bool: True if source was successfully opened, False otherwise """ try: print(f"🔍 Opening video source for properties check: {self.source}") cap = cv2.VideoCapture(self.source) # Verify capture opened successfully if not cap.isOpened(): print(f"❌ Failed to open video source: {self.source}") return False # Read properties self.source_fps = cap.get(cv2.CAP_PROP_FPS) if self.source_fps <= 0: print("âš ī¸ Source FPS not available, using default 30 FPS") self.source_fps = 30.0 # Default if undetectable self.frame_width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH)) self.frame_height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT)) self.frame_count = int(cap.get(cv2.CAP_PROP_FRAME_COUNT)) # Try reading a test frame to confirm source is truly working ret, test_frame = cap.read() if not ret or test_frame is None: print("âš ī¸ Could not read test frame from source") # For camera sources, try one more time with delay if self.source_type == "camera": print("🔄 Retrying camera initialization...") time.sleep(1.0) # Wait a moment for camera to initialize ret, test_frame = cap.read() if not ret or test_frame is None: print("❌ Camera initialization failed after retry") cap.release() return False else: print("❌ Could not read frames from video source") cap.release() return False # Release the capture cap.release() print(f"✅ Video source properties: {self.frame_width}x{self.frame_height}, {self.source_fps} FPS") return True except Exception as e: print(f"❌ Error getting source properties: {e}") return False return False def start(self): """Start video processing""" if not self._running: self._running = True self.start_time = time.time() self.frame_count = 0 self.debug_counter = 0 print("DEBUG: Starting video processing thread") # Reset ByteTrack tracker to ensure IDs start from 1 if hasattr(self, 'vehicle_tracker') and self.vehicle_tracker is not None: try: print("🔄 Resetting vehicle tracker for new session") self.vehicle_tracker.reset() except Exception as e: print(f"âš ī¸ Could not reset vehicle tracker: {e}") # Start the processing thread - add more detailed debugging if not self.thread.isRunning(): print("🚀 Thread not running, starting now...") try: self.thread.start() print("✅ Thread started successfully") print(f"🔄 Thread state: running={self.thread.isRunning()}, finished={self.thread.isFinished()}") except Exception as e: print(f"❌ Failed to start thread: {e}") import traceback traceback.print_exc() else: print("âš ī¸ Thread is already running!") print(f"🔄 Thread state: running={self.thread.isRunning()}, finished={self.thread.isFinished()}") # Start the render timer with a very aggressive interval (10ms = 100fps) # This ensures we can process frames as quickly as possible print("âąī¸ Starting render timer...") self.render_timer.start(10) print("✅ Render timer started at 100Hz") def stop(self): """Stop video processing""" if self._running: print("DEBUG: Stopping video processing") self._running = False self.render_timer.stop() # Properly terminate the thread if self.thread.isRunning(): self.thread.quit() if not self.thread.wait(3000): # Wait 3 seconds max self.thread.terminate() print("WARNING: Thread termination forced") # Clear the current frame self.mutex.lock() self.current_frame = None self.mutex.unlock() print("DEBUG: Video processing stopped") def __del__(self): print("[VideoController] __del__ called. Cleaning up thread and timer.") self.stop() if self.thread.isRunning(): self.thread.quit() self.thread.wait(1000) self.render_timer.stop() def capture_snapshot(self) -> np.ndarray: """Capture current frame""" if self.current_frame is not None: return self.current_frame.copy() return None def _run(self): """Main processing loop (runs in thread)""" try: # Print the source we're trying to open print(f"DEBUG: Opening video source: {self.source} (type: {type(self.source)})") cap = None # Initialize capture variable # Try to open source with more robust error handling max_retries = 3 retry_delay = 1.0 # seconds # Function to attempt opening the source with multiple retries def try_open_source(src, retries=max_retries, delay=retry_delay): for attempt in range(1, retries + 1): print(f"đŸŽĨ Opening source (attempt {attempt}/{retries}): {src}") try: capture = cv2.VideoCapture(src) if capture.isOpened(): # Try to read a test frame to confirm it's working ret, test_frame = capture.read() if ret and test_frame is not None: print(f"✅ Source opened successfully: {src}") # Reset capture position for file sources if isinstance(src, str) and os.path.exists(src): capture.set(cv2.CAP_PROP_POS_FRAMES, 0) return capture else: print(f"âš ī¸ Source opened but couldn't read frame: {src}") capture.release() else: print(f"âš ī¸ Failed to open source: {src}") # Retry after delay if attempt < retries: print(f"Retrying in {delay:.1f} seconds...") time.sleep(delay) except Exception as e: print(f"❌ Error opening source {src}: {e}") if attempt < retries: print(f"Retrying in {delay:.1f} seconds...") time.sleep(delay) print(f"❌ Failed to open source after {retries} attempts: {src}") return None # Handle different source types if isinstance(self.source, str) and os.path.exists(self.source): # It's a valid file path print(f"📄 Opening video file: {self.source}") cap = try_open_source(self.source) elif isinstance(self.source, int) or (isinstance(self.source, str) and self.source.isdigit()): # It's a camera index camera_idx = int(self.source) if isinstance(self.source, str) else self.source print(f"📹 Opening camera with index: {camera_idx}") # For cameras, try with different backend options if it fails cap = try_open_source(camera_idx) # If failed, try with DirectShow backend on Windows if cap is None and os.name == 'nt': print("🔄 Trying camera with DirectShow backend...") cap = try_open_source(camera_idx + cv2.CAP_DSHOW) else: # Try as a string source (URL or device path) print(f"🌐 Opening source as string: {self.source}") cap = try_open_source(str(self.source)) # Check if we successfully opened the source if cap is None: print(f"❌ Failed to open video source after all attempts: {self.source}") # Notify UI about the error self.stats_ready.emit({ 'error': f"Could not open video source: {self.source}", 'fps': "0", 'detection_time_ms': "0", 'traffic_light_color': {"color": "unknown", "confidence": 0.0} }) return # Check again to ensure capture is valid if not cap or not cap.isOpened(): print(f"ERROR: Could not open video source {self.source}") # Emit a signal to notify UI about the error self.stats_ready.emit({ 'error': f"Failed to open video source: {self.source}", 'fps': "0", 'detection_time_ms': "0", 'traffic_light_color': {"color": "unknown", "confidence": 0.0} }) return # Configure frame timing based on source FPS frame_time = 1.0 / self.source_fps if self.source_fps > 0 else 0.033 prev_time = time.time() # Log successful opening print(f"SUCCESS: Video source opened: {self.source}") print(f"Source info - FPS: {self.source_fps}, Size: {self.frame_width}x{self.frame_height}") # Main processing loop frame_error_count = 0 max_consecutive_errors = 10 while self._running and cap.isOpened(): try: ret, frame = cap.read() # Add critical frame debugging print(f"🟡 Frame read attempt: ret={ret}, frame={None if frame is None else frame.shape}") if not ret or frame is None: frame_error_count += 1 print(f"âš ī¸ Frame read error ({frame_error_count}/{max_consecutive_errors})") if frame_error_count >= max_consecutive_errors: print("❌ Too many consecutive frame errors, stopping video thread") break # Skip this iteration and try again time.sleep(0.1) # Wait a bit before trying again continue # Reset the error counter if we successfully got a frame frame_error_count = 0 except Exception as e: print(f"❌ Critical error reading frame: {e}") frame_error_count += 1 if frame_error_count >= max_consecutive_errors: print("❌ Too many errors, stopping video thread") break continue # Detection and violation processing process_start = time.time() # Process detections detection_start = time.time() detections = [] if self.model_manager: detections = self.model_manager.detect(frame) # Normalize class names for consistency and check for traffic lights traffic_light_indices = [] for i, det in enumerate(detections): if 'class_name' in det: original_name = det['class_name'] normalized_name = normalize_class_name(original_name) # Keep track of traffic light indices if normalized_name == 'traffic light' or original_name == 'traffic light': traffic_light_indices.append(i) if original_name != normalized_name: print(f"📊 Normalized class name: '{original_name}' -> '{normalized_name}'") det['class_name'] = normalized_name # Ensure we have at least one traffic light for debugging if not traffic_light_indices and self.source_type == 'video': print("âš ī¸ No traffic lights detected, checking for objects that might be traffic lights...") # Try lowering the confidence threshold specifically for traffic lights # This is only for debugging purposes if self.model_manager and hasattr(self.model_manager, 'detect'): try: low_conf_detections = self.model_manager.detect(frame, conf_threshold=0.2) for det in low_conf_detections: if 'class_name' in det and det['class_name'] == 'traffic light': if det not in detections: print(f"đŸšĻ Found low confidence traffic light: {det['confidence']:.2f}") detections.append(det) except: pass detection_time = (time.time() - detection_start) * 1000 # Violation detection is disabled violation_start = time.time() violations = [] # if self.model_manager and detections: # violations = self.model_manager.detect_violations( # detections, frame, time.time() # ) violation_time = (time.time() - violation_start) * 1000 # Update tracking if available if self.model_manager: detections = self.model_manager.update_tracking(detections, frame) # If detections are returned as tuples, convert to dicts for downstream code if detections and isinstance(detections[0], tuple): # Convert (id, bbox, conf, class_id) to dict detections = [ {'id': d[0], 'bbox': d[1], 'confidence': d[2], 'class_id': d[3]} for d in detections ] # Calculate timing metrics process_time = (time.time() - process_start) * 1000 self.processing_times.append(process_time) # Update FPS now = time.time() self.frame_count += 1 elapsed = now - self.start_time if elapsed > 0: self.actual_fps = self.frame_count / elapsed fps_smoothed = 1.0 / (now - prev_time) if now > prev_time else 0 prev_time = now # Update metrics self.performance_metrics = { 'FPS': f"{fps_smoothed:.1f}", 'Detection (ms)': f"{detection_time:.1f}", 'Total (ms)': f"{process_time:.1f}" } # Store current frame data (thread-safe) self.mutex.lock() self.current_frame = frame.copy() self.current_detections = detections self.mutex.unlock() # Process frame with annotations before sending to UI annotated_frame = frame.copy() # --- VIOLATION DETECTION LOGIC (Run BEFORE drawing boxes) --- # First get violation information so we can color boxes appropriately violating_vehicle_ids = set() # Track which vehicles are violating violations = [] # Initialize traffic light variables traffic_lights = [] has_traffic_lights = False # Handle multiple traffic lights with consensus approach traffic_light_count = 0 for det in detections: if is_traffic_light(det.get('class_name')): has_traffic_lights = True traffic_light_count += 1 if 'traffic_light_color' in det: light_info = det['traffic_light_color'] traffic_lights.append({'bbox': det['bbox'], 'color': light_info.get('color', 'unknown'), 'confidence': light_info.get('confidence', 0.0)}) print(f"[TRAFFIC LIGHT] Detected {traffic_light_count} traffic light(s), has_traffic_lights={has_traffic_lights}") if has_traffic_lights: print(f"[TRAFFIC LIGHT] Traffic light colors: {[tl.get('color', 'unknown') for tl in traffic_lights]}") # Get traffic light position for crosswalk detection traffic_light_position = None if has_traffic_lights: for det in detections: if is_traffic_light(det.get('class_name')) and 'bbox' in det: traffic_light_bbox = det['bbox'] # Extract center point from bbox for crosswalk utils x1, y1, x2, y2 = traffic_light_bbox traffic_light_position = ((x1 + x2) // 2, (y1 + y2) // 2) break # Run crosswalk detection ONLY if traffic light is detected crosswalk_bbox, violation_line_y, debug_info = None, None, {} if has_traffic_lights and traffic_light_position is not None: try: print(f"[CROSSWALK] Traffic light detected at {traffic_light_position}, running crosswalk detection") # Use new crosswalk_utils2 logic only when traffic light exists annotated_frame, crosswalk_bbox, violation_line_y, debug_info = detect_crosswalk_and_violation_line( annotated_frame, traffic_light_position=traffic_light_position ) print(f"[CROSSWALK] Detection result: crosswalk_bbox={crosswalk_bbox is not None}, violation_line_y={violation_line_y}") # --- Draw crosswalk region if detected and close to traffic light --- # (REMOVED: Do not draw crosswalk box or label) # if crosswalk_bbox is not None: # x, y, w, h = map(int, crosswalk_bbox) # tl_x, tl_y = traffic_light_position # crosswalk_center_y = y + h // 2 # distance = abs(crosswalk_center_y - tl_y) # print(f"[CROSSWALK DEBUG] Crosswalk bbox: {crosswalk_bbox}, Traffic light: {traffic_light_position}, vertical distance: {distance}") # if distance < 120: # cv2.rectangle(annotated_frame, (x, y), (x + w, y + h), (0, 255, 0), 3) # cv2.putText(annotated_frame, "Crosswalk", (x, y - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.8, (0, 255, 0), 2) # # Top and bottom edge of crosswalk # top_edge = y # bottom_edge = y + h # if abs(tl_y - top_edge) < abs(tl_y - bottom_edge): # crosswalk_edge_y = top_edge # else: # crosswalk_edge_y = bottom_edge if crosswalk_bbox is not None: x, y, w, h = map(int, crosswalk_bbox) tl_x, tl_y = traffic_light_position crosswalk_center_y = y + h // 2 distance = abs(crosswalk_center_y - tl_y) print(f"[CROSSWALK DEBUG] Crosswalk bbox: {crosswalk_bbox}, Traffic light: {traffic_light_position}, vertical distance: {distance}") # Top and bottom edge of crosswalk top_edge = y bottom_edge = y + h if abs(tl_y - top_edge) < abs(tl_y - bottom_edge): crosswalk_edge_y = top_edge else: crosswalk_edge_y = bottom_edge except Exception as e: print(f"[ERROR] Crosswalk detection failed: {e}") crosswalk_bbox, violation_line_y, debug_info = None, None, {} else: print(f"[CROSSWALK] No traffic light detected (has_traffic_lights={has_traffic_lights}), skipping crosswalk detection") # NO crosswalk detection without traffic light violation_line_y = None # Check if crosswalk is detected crosswalk_detected = crosswalk_bbox is not None stop_line_detected = debug_info.get('stop_line') is not None # ALWAYS process vehicle tracking (moved outside violation logic) tracked_vehicles = [] if hasattr(self, 'vehicle_tracker') and self.vehicle_tracker is not None: try: # Filter vehicle detections vehicle_classes = ['car', 'truck', 'bus', 'motorcycle', 'van', 'bicycle'] vehicle_dets = [] h, w = frame.shape[:2] print(f"[TRACK DEBUG] Processing {len(detections)} total detections") for det in detections: if (det.get('class_name') in vehicle_classes and 'bbox' in det and det.get('confidence', 0) > self.min_confidence_threshold): # Check bbox dimensions bbox = det['bbox'] x1, y1, x2, y2 = bbox box_w, box_h = x2-x1, y2-y1 box_area = box_w * box_h area_ratio = box_area / (w * h) print(f"[TRACK DEBUG] Vehicle {det.get('class_name')} conf={det.get('confidence'):.2f}, area_ratio={area_ratio:.4f}") if 0.001 <= area_ratio <= 0.25: vehicle_dets.append(det) print(f"[TRACK DEBUG] Added vehicle: {det.get('class_name')} conf={det.get('confidence'):.2f}") else: print(f"[TRACK DEBUG] Rejected vehicle: area_ratio={area_ratio:.4f} not in range [0.001, 0.25]") print(f"[TRACK DEBUG] Filtered to {len(vehicle_dets)} vehicle detections") # Update tracker if len(vehicle_dets) > 0: print(f"[TRACK DEBUG] Updating tracker with {len(vehicle_dets)} vehicles...") tracks = self.vehicle_tracker.update(vehicle_dets, frame) # Filter out tracks without bbox to avoid warnings valid_tracks = [] for track in tracks: bbox = None if isinstance(track, dict): bbox = track.get('bbox', None) else: bbox = getattr(track, 'bbox', None) if bbox is not None: valid_tracks.append(track) else: print(f"Warning: Track has no bbox, skipping: {track}") tracks = valid_tracks print(f"[TRACK DEBUG] Tracker returned {len(tracks)} tracks (after bbox filter)") else: print(f"[TRACK DEBUG] No vehicles to track, skipping tracker update") tracks = [] # Process each tracked vehicle tracked_vehicles = [] track_ids_seen = [] for track in tracks: track_id = track['id'] bbox = track['bbox'] x1, y1, x2, y2 = map(float, bbox) center_y = (y1 + y2) / 2 # Check for duplicate IDs if track_id in track_ids_seen: print(f"[TRACK ERROR] Duplicate ID detected: {track_id}") track_ids_seen.append(track_id) print(f"[TRACK DEBUG] Processing track ID={track_id} bbox={bbox}") # Initialize or update vehicle history if track_id not in self.vehicle_history: from collections import deque self.vehicle_history[track_id] = deque(maxlen=self.position_history_size) # Initialize vehicle status if not exists if track_id not in self.vehicle_statuses: self.vehicle_statuses[track_id] = { 'recent_movement': [], 'violation_history': [], 'crossed_during_red': False, 'last_position': None, # Track last position for jump detection 'suspicious_jumps': 0 # Count suspicious position jumps } # Detect suspicious position jumps (potential ID switches) if self.vehicle_statuses[track_id]['last_position'] is not None: last_y = self.vehicle_statuses[track_id]['last_position'] center_y = (y1 + y2) / 2 position_jump = abs(center_y - last_y) if position_jump > self.max_position_jump: self.vehicle_statuses[track_id]['suspicious_jumps'] += 1 print(f"[TRACK WARNING] Vehicle ID={track_id} suspicious position jump: {last_y:.1f} -> {center_y:.1f} (jump={position_jump:.1f})") # If too many suspicious jumps, reset violation status to be safe if self.vehicle_statuses[track_id]['suspicious_jumps'] > 2: print(f"[TRACK RESET] Vehicle ID={track_id} has too many suspicious jumps, resetting violation status") self.vehicle_statuses[track_id]['crossed_during_red'] = False self.vehicle_statuses[track_id]['suspicious_jumps'] = 0 # Update position history and last position self.vehicle_history[track_id].append(center_y) self.vehicle_statuses[track_id]['last_position'] = center_y # BALANCED movement detection - detect clear movement while avoiding false positives is_moving = False movement_detected = False if len(self.vehicle_history[track_id]) >= 3: # Require at least 3 frames for movement detection recent_positions = list(self.vehicle_history[track_id]) # Check movement over 3 frames for quick response if len(recent_positions) >= 3: movement_3frames = abs(recent_positions[-1] - recent_positions[-3]) if movement_3frames > self.movement_threshold: # More responsive threshold movement_detected = True print(f"[MOVEMENT] Vehicle ID={track_id} MOVING: 3-frame movement = {movement_3frames:.1f}") # Confirm with longer movement for stability (if available) if len(recent_positions) >= 5: movement_5frames = abs(recent_positions[-1] - recent_positions[-5]) if movement_5frames > self.movement_threshold * 1.5: # Moderate threshold for 5 frames movement_detected = True print(f"[MOVEMENT] Vehicle ID={track_id} MOVING: 5-frame movement = {movement_5frames:.1f}") # Store historical movement for smoothing - require consistent movement self.vehicle_statuses[track_id]['recent_movement'].append(movement_detected) if len(self.vehicle_statuses[track_id]['recent_movement']) > 4: # Shorter history for quicker response self.vehicle_statuses[track_id]['recent_movement'].pop(0) # BALANCED: Require majority of recent frames to show movement (2 out of 4) recent_movement_count = sum(self.vehicle_statuses[track_id]['recent_movement']) total_recent_frames = len(self.vehicle_statuses[track_id]['recent_movement']) if total_recent_frames >= 2 and recent_movement_count >= (total_recent_frames * 0.5): # 50% of frames must show movement is_moving = True print(f"[TRACK DEBUG] Vehicle ID={track_id} is_moving={is_moving} (threshold={self.movement_threshold})") # Initialize as not violating is_violation = False tracked_vehicles.append({ 'id': track_id, 'bbox': bbox, 'center_y': center_y, 'is_moving': is_moving, 'is_violation': is_violation }) print(f"[DEBUG] ByteTrack tracked {len(tracked_vehicles)} vehicles") for i, tracked in enumerate(tracked_vehicles): print(f" Vehicle {i}: ID={tracked['id']}, center_y={tracked['center_y']:.1f}, moving={tracked['is_moving']}, violating={tracked['is_violation']}") # DEBUG: Print all tracked vehicle IDs and their bboxes for this frame if tracked_vehicles: print(f"[DEBUG] All tracked vehicles this frame:") for v in tracked_vehicles: print(f" ID={v['id']} bbox={v['bbox']} center_y={v.get('center_y', 'NA')}") else: print("[DEBUG] No tracked vehicles this frame!") # Clean up old vehicle data current_track_ids = [tracked['id'] for tracked in tracked_vehicles] self._cleanup_old_vehicle_data(current_track_ids) except Exception as e: print(f"[ERROR] Vehicle tracking failed: {e}") import traceback traceback.print_exc() else: print("[WARN] ByteTrack vehicle tracker not available!") # Process violations - CHECK VEHICLES THAT CROSS THE LINE OVER A WINDOW OF FRAMES # IMPORTANT: Only process violations if traffic light is detected AND violation line exists if has_traffic_lights and violation_line_y is not None and tracked_vehicles: print(f"[VIOLATION DEBUG] Traffic light present, checking {len(tracked_vehicles)} vehicles against violation line at y={violation_line_y}") # Check each tracked vehicle for violations for tracked in tracked_vehicles: track_id = tracked['id'] center_y = tracked['center_y'] is_moving = tracked['is_moving'] # Get position history for this vehicle position_history = list(self.vehicle_history[track_id]) # Enhanced crossing detection: check over a window of frames line_crossed_in_window = False crossing_details = None if len(position_history) >= 2: # Check for crossing over the last N frames (configurable window) window_size = min(self.crossing_check_window, len(position_history)) for i in range(1, window_size): prev_y = position_history[-(i+1)] # Earlier position curr_y = position_history[-i] # Later position # Check if vehicle crossed the line in this frame pair if prev_y < violation_line_y and curr_y >= violation_line_y: line_crossed_in_window = True crossing_details = { 'frames_ago': i, 'prev_y': prev_y, 'curr_y': curr_y, 'window_checked': window_size } print(f"[VIOLATION DEBUG] Vehicle ID={track_id} crossed line {i} frames ago: {prev_y:.1f} -> {curr_y:.1f}") break # Check if traffic light is red is_red_light = self.latest_traffic_light and self.latest_traffic_light.get('color') == 'red' print(f"[VIOLATION DEBUG] Vehicle ID={track_id}: latest_traffic_light={self.latest_traffic_light}, is_red_light={is_red_light}") print(f"[VIOLATION DEBUG] Vehicle ID={track_id}: position_history={[f'{p:.1f}' for p in position_history[-5:]]}"); # Show last 5 positions print(f"[VIOLATION DEBUG] Vehicle ID={track_id}: line_crossed_in_window={line_crossed_in_window}, crossing_details={crossing_details}") # Enhanced violation detection: vehicle crossed the line while moving and light is red actively_crossing = (line_crossed_in_window and is_moving and is_red_light) # Initialize violation status for new vehicles if 'crossed_during_red' not in self.vehicle_statuses[track_id]: self.vehicle_statuses[track_id]['crossed_during_red'] = False # Mark vehicle as having crossed during red if it actively crosses if actively_crossing: # Additional validation: ensure it's not a false positive from ID switch suspicious_jumps = self.vehicle_statuses[track_id].get('suspicious_jumps', 0) if suspicious_jumps <= 1: # Allow crossing if not too many suspicious jumps self.vehicle_statuses[track_id]['crossed_during_red'] = True print(f"[VIOLATION ALERT] Vehicle ID={track_id} CROSSED line during red light!") print(f" -> Crossing details: {crossing_details}") else: print(f"[VIOLATION IGNORED] Vehicle ID={track_id} crossing ignored due to {suspicious_jumps} suspicious jumps") # IMPORTANT: Reset violation status when light turns green (regardless of position) if not is_red_light: if self.vehicle_statuses[track_id]['crossed_during_red']: print(f"[VIOLATION RESET] Vehicle ID={track_id} violation status reset (light turned green)") self.vehicle_statuses[track_id]['crossed_during_red'] = False # Vehicle is violating ONLY if it crossed during red and light is still red is_violation = (self.vehicle_statuses[track_id]['crossed_during_red'] and is_red_light) # Track current violation state for analytics - only actual crossings self.vehicle_statuses[track_id]['violation_history'].append(actively_crossing) if len(self.vehicle_statuses[track_id]['violation_history']) > 5: self.vehicle_statuses[track_id]['violation_history'].pop(0) print(f"[VIOLATION DEBUG] Vehicle ID={track_id}: center_y={center_y:.1f}, line={violation_line_y}") print(f" history_window={[f'{p:.1f}' for p in position_history[-self.crossing_check_window:]]}") print(f" moving={is_moving}, red_light={is_red_light}") print(f" actively_crossing={actively_crossing}, crossed_during_red={self.vehicle_statuses[track_id]['crossed_during_red']}") print(f" suspicious_jumps={self.vehicle_statuses[track_id].get('suspicious_jumps', 0)}") print(f" FINAL_VIOLATION={is_violation}") # Update violation status tracked['is_violation'] = is_violation if actively_crossing and self.vehicle_statuses[track_id].get('suspicious_jumps', 0) <= 1: # Only add if not too many suspicious jumps # Add to violating vehicles set violating_vehicle_ids.add(track_id) # Add to violations list timestamp = datetime.now() # Keep as datetime object, not string violations.append({ 'track_id': track_id, 'id': track_id, 'bbox': [int(tracked['bbox'][0]), int(tracked['bbox'][1]), int(tracked['bbox'][2]), int(tracked['bbox'][3])], 'violation': 'line_crossing', 'violation_type': 'line_crossing', # Add this for analytics compatibility 'timestamp': timestamp, 'line_position': violation_line_y, 'movement': crossing_details if crossing_details else {'prev_y': center_y, 'current_y': center_y}, 'crossing_window': self.crossing_check_window, 'position_history': list(position_history[-10:]) # Include recent history for debugging }) print(f"[DEBUG] 🚨 VIOLATION DETECTED: Vehicle ID={track_id} CROSSED VIOLATION LINE") print(f" Enhanced detection: {crossing_details}") print(f" Position history: {[f'{p:.1f}' for p in position_history[-10:]]}") print(f" Detection window: {self.crossing_check_window} frames") print(f" while RED LIGHT & MOVING") # Emit progress signal after processing each frame if hasattr(self, 'progress_ready'): self.progress_ready.emit(int(cap.get(cv2.CAP_PROP_POS_FRAMES)), int(cap.get(cv2.CAP_PROP_FRAME_COUNT)), time.time()) # Draw detections with bounding boxes - NOW with violation info # Only show traffic light and vehicle classes allowed_classes = ['traffic light', 'car', 'truck', 'bus', 'motorcycle', 'van', 'bicycle'] filtered_detections = [det for det in detections if det.get('class_name') in allowed_classes] print(f"Drawing {len(filtered_detections)} detection boxes on frame (filtered)") # Statistics for debugging (always define, even if no detections) vehicles_with_ids = 0 vehicles_without_ids = 0 vehicles_moving = 0 vehicles_violating = 0 if detections and len(detections) > 0: # Only show traffic light and vehicle classes allowed_classes = ['traffic light', 'car', 'truck', 'bus', 'motorcycle', 'van', 'bicycle'] filtered_detections = [det for det in detections if det.get('class_name') in allowed_classes] print(f"Drawing {len(filtered_detections)} detection boxes on frame (filtered)") # Statistics for debugging vehicles_with_ids = 0 vehicles_without_ids = 0 vehicles_moving = 0 vehicles_violating = 0 for det in filtered_detections: if 'bbox' in det: bbox = det['bbox'] x1, y1, x2, y2 = map(int, bbox) label = det.get('class_name', 'object') confidence = det.get('confidence', 0.0) # Robustness: ensure label and confidence are not None if label is None: label = 'object' if confidence is None: confidence = 0.0 class_id = det.get('class_id', -1) # Check if this detection corresponds to a violating or moving vehicle det_center_x = (x1 + x2) / 2 det_center_y = (y1 + y2) / 2 is_violating_vehicle = False is_moving_vehicle = False vehicle_id = None # Match detection with tracked vehicles - IMPROVED MATCHING if label in ['car', 'truck', 'bus', 'motorcycle', 'van', 'bicycle'] and len(tracked_vehicles) > 0: print(f"[MATCH DEBUG] Attempting to match {label} detection at ({det_center_x:.1f}, {det_center_y:.1f}) with {len(tracked_vehicles)} tracked vehicles") best_match = None best_distance = float('inf') best_iou = 0.0 for i, tracked in enumerate(tracked_vehicles): track_bbox = tracked['bbox'] track_x1, track_y1, track_x2, track_y2 = map(float, track_bbox) # Calculate center distance track_center_x = (track_x1 + track_x2) / 2 track_center_y = (track_y1 + track_y2) / 2 center_distance = ((det_center_x - track_center_x)**2 + (det_center_y - track_center_y)**2)**0.5 # Calculate IoU (Intersection over Union) intersection_x1 = max(x1, track_x1) intersection_y1 = max(y1, track_y1) intersection_x2 = min(x2, track_x2) intersection_y2 = min(y2, track_y2) if intersection_x2 > intersection_x1 and intersection_y2 > intersection_y1: intersection_area = (intersection_x2 - intersection_x1) * (intersection_y2 - intersection_y1) det_area = (x2 - x1) * (y2 - y1) track_area = (track_x2 - track_x1) * (track_y2 - track_y1) union_area = det_area + track_area - intersection_area iou = intersection_area / union_area if union_area > 0 else 0 else: iou = 0 print(f"[MATCH DEBUG] Track {i}: ID={tracked['id']}, center=({track_center_x:.1f}, {track_center_y:.1f}), distance={center_distance:.1f}, IoU={iou:.3f}") # Use stricter matching criteria - prioritize IoU over distance # Good match if: high IoU OR close center distance with some overlap is_good_match = (iou > 0.3) or (center_distance < 60 and iou > 0.1) if is_good_match: print(f"[MATCH DEBUG] Track {i} is a good match (IoU={iou:.3f}, distance={center_distance:.1f})") # Prefer higher IoU, then lower distance match_score = iou + (100 - min(center_distance, 100)) / 100 # Composite score if iou > best_iou or (iou == best_iou and center_distance < best_distance): best_distance = center_distance best_iou = iou best_match = tracked else: print(f"[MATCH DEBUG] Track {i} failed matching criteria (IoU={iou:.3f}, distance={center_distance:.1f})") if best_match: vehicle_id = best_match['id'] is_moving_vehicle = best_match.get('is_moving', False) is_violating_vehicle = best_match.get('is_violation', False) print(f"[MATCH SUCCESS] Detection at ({det_center_x:.1f},{det_center_y:.1f}) matched with track ID={vehicle_id}") print(f" -> STATUS: moving={is_moving_vehicle}, violating={is_violating_vehicle}, IoU={best_iou:.3f}, distance={best_distance:.1f}") else: print(f"[MATCH FAILED] No suitable match found for {label} detection at ({det_center_x:.1f}, {det_center_y:.1f})") print(f" -> Will draw as untracked detection with default color") else: if label not in ['car', 'truck', 'bus', 'motorcycle', 'van', 'bicycle']: print(f"[MATCH DEBUG] Skipping matching for non-vehicle label: {label}") elif len(tracked_vehicles) == 0: print(f"[MATCH DEBUG] No tracked vehicles available for matching") else: try: if len(tracked_vehicles) > 0: distances = [((det_center_x - (t['bbox'][0] + t['bbox'][2])/2)**2 + (det_center_y - (t['bbox'][1] + t['bbox'][3])/2)**2)**0.5 for t in tracked_vehicles[:3]] print(f"[DEBUG] No match found for detection at ({det_center_x:.1f},{det_center_y:.1f}) - distances: {distances}") else: print(f"[DEBUG] No tracked vehicles available to match detection at ({det_center_x:.1f},{det_center_y:.1f})") except NameError: print(f"[DEBUG] No match found for detection (coords unavailable)") if len(tracked_vehicles) > 0: print(f"[DEBUG] Had {len(tracked_vehicles)} tracked vehicles available") # Choose box color based on vehicle status # PRIORITY: 1. Violating (RED) - crossed during red light 2. Moving (ORANGE) 3. Stopped (GREEN) if is_violating_vehicle and vehicle_id is not None: box_color = (0, 0, 255) # RED for violating vehicles (crossed line during red) label_text = f"{label}:ID{vehicle_id}âš ī¸" thickness = 4 vehicles_violating += 1 print(f"[COLOR DEBUG] Drawing RED box for VIOLATING vehicle ID={vehicle_id} (crossed during red)") elif is_moving_vehicle and vehicle_id is not None and not is_violating_vehicle: box_color = (0, 165, 255) # ORANGE for moving vehicles (not violating) label_text = f"{label}:ID{vehicle_id}" thickness = 3 vehicles_moving += 1 print(f"[COLOR DEBUG] Drawing ORANGE box for MOVING vehicle ID={vehicle_id} (not violating)") elif label in ['car', 'truck', 'bus', 'motorcycle', 'van', 'bicycle'] and vehicle_id is not None: box_color = (0, 255, 0) # Green for stopped vehicles label_text = f"{label}:ID{vehicle_id}" thickness = 2 print(f"[COLOR DEBUG] Drawing GREEN box for STOPPED vehicle ID={vehicle_id}") elif is_traffic_light(label): box_color = (0, 0, 255) # Red for traffic lights label_text = f"{label}" thickness = 2 else: box_color = (0, 255, 0) # Default green for other objects label_text = f"{label}" thickness = 2 # Update statistics if label in ['car', 'truck', 'bus', 'motorcycle', 'van', 'bicycle']: if vehicle_id is not None: vehicles_with_ids += 1 else: vehicles_without_ids += 1 # Draw rectangle and label cv2.rectangle(annotated_frame, (x1, y1), (x2, y2), box_color, thickness) cv2.putText(annotated_frame, label_text, (x1, y1-10), cv2.FONT_HERSHEY_SIMPLEX, 0.5, box_color, 2) # id_text = f"ID: {det['id']}" # # Calculate text size for background # (tw, th), baseline = cv2.getTextSize(id_text, cv2.FONT_HERSHEY_SIMPLEX, 0.8, 2) # # Draw filled rectangle for background (top-left of bbox) # cv2.rectangle(annotated_frame, (x1, y1 - th - 8), (x1 + tw + 4, y1), (0, 0, 0), -1) # # Draw the ID text in bold yellow # cv2.putText(annotated_frame, id_text, (x1 + 2, y1 - 4), cv2.FONT_HERSHEY_SIMPLEX, 0.8, (0, 255, 255), 2, cv2.LINE_AA) # print(f"[DEBUG] Detection ID: {det['id']} BBOX: {bbox} CLASS: {label} CONF: {confidence:.2f}") if class_id == 9 or is_traffic_light(label): try: light_info = detect_traffic_light_color(annotated_frame, [x1, y1, x2, y2]) if light_info.get("color", "unknown") == "unknown": light_info = ensure_traffic_light_color(annotated_frame, [x1, y1, x2, y2]) det['traffic_light_color'] = light_info # Draw enhanced traffic light status annotated_frame = draw_traffic_light_status(annotated_frame, bbox, light_info) # --- Update latest_traffic_light for UI/console --- self.latest_traffic_light = light_info # Add a prominent traffic light status at the top of the frame color = light_info.get('color', 'unknown') confidence = light_info.get('confidence', 0.0) if color == 'red': status_color = (0, 0, 255) # Red status_text = f"Traffic Light: RED ({confidence:.2f})" # Draw a prominent red banner across the top banner_height = 40 cv2.rectangle(annotated_frame, (0, 0), (annotated_frame.shape[1], banner_height), (0, 0, 150), -1) # Add text font = cv2.FONT_HERSHEY_DUPLEX font_scale = 0.9 font_thickness = 2 cv2.putText(annotated_frame, status_text, (10, banner_height-12), font, font_scale, (255, 255, 255), font_thickness) except Exception as e: print(f"[WARN] Could not detect/draw traffic light color: {e}") # Print statistics summary print(f"[STATS] Vehicles: {vehicles_with_ids} with IDs, {vehicles_without_ids} without IDs") print(f"[STATS] Moving: {vehicles_moving}, Violating: {vehicles_violating}") # Handle multiple traffic lights with consensus approach for det in detections: if is_traffic_light(det.get('class_name')): has_traffic_lights = True if 'traffic_light_color' in det: light_info = det['traffic_light_color'] traffic_lights.append({'bbox': det['bbox'], 'color': light_info.get('color', 'unknown'), 'confidence': light_info.get('confidence', 0.0)}) # Determine the dominant traffic light color based on confidence if traffic_lights: # Filter to just red lights and sort by confidence red_lights = [tl for tl in traffic_lights if tl.get('color') == 'red'] if red_lights: # Use the highest confidence red light for display highest_conf_red = max(red_lights, key=lambda x: x.get('confidence', 0)) # Update the global traffic light status for consistent UI display self.latest_traffic_light = { 'color': 'red', 'confidence': highest_conf_red.get('confidence', 0.0) } # Emit individual violation signals for each violation if violations: for violation in violations: print(f"🚨 Emitting RED LIGHT VIOLATION: Track ID {violation['track_id']}") # Add additional data to the violation violation['frame'] = frame violation['violation_line_y'] = violation_line_y self.violation_detected.emit(violation) print(f"[DEBUG] Emitted {len(violations)} violation signals") # Add FPS display directly on frame # cv2.putText(annotated_frame, f"FPS: {fps_smoothed:.1f}", (10, 30), # cv2.FONT_HERSHEY_SIMPLEX, 1, (255, 255, 255), 2) # # --- Always draw detected traffic light color indicator at top --- # color = self.latest_traffic_light.get('color', 'unknown') if isinstance(self.latest_traffic_light, dict) else str(self.latest_traffic_light) # confidence = self.latest_traffic_light.get('confidence', 0.0) if isinstance(self.latest_traffic_light, dict) else 0.0 # indicator_size = 30 # margin = 10 # status_colors = { # "red": (0, 0, 255), # "yellow": (0, 255, 255), # "green": (0, 255, 0), # "unknown": (200, 200, 200) # } # draw_color = status_colors.get(color, (200, 200, 200)) # # Draw circle indicator # cv2.circle( # annotated_frame, # (annotated_frame.shape[1] - margin - indicator_size, margin + indicator_size), # indicator_size, # draw_color, # -1 # ) # # Add color text # cv2.putText( # annotated_frame, # f"{color.upper()} ({confidence:.2f})", # (annotated_frame.shape[1] - margin - indicator_size - 120, margin + indicator_size + 10), # cv2.FONT_HERSHEY_SIMPLEX, # 0.7, # (0, 0, 0), # 2 # ) # Signal for raw data subscribers (now without violations) # Emit with correct number of arguments try: self.raw_frame_ready.emit(frame.copy(), detections, fps_smoothed) print(f"✅ raw_frame_ready signal emitted with {len(detections)} detections, fps={fps_smoothed:.1f}") except Exception as e: print(f"❌ Error emitting raw_frame_ready: {e}") import traceback traceback.print_exc() # Emit the NumPy frame signal for direct display - annotated version for visual feedback print(f"🔴 Emitting frame_np_ready signal with annotated_frame shape: {annotated_frame.shape}") try: # Make sure the frame can be safely transmitted over Qt's signal system # Create a contiguous copy of the array frame_copy = np.ascontiguousarray(annotated_frame) print(f"🔍 Debug - Before emission: frame_copy type={type(frame_copy)}, shape={frame_copy.shape}, is_contiguous={frame_copy.flags['C_CONTIGUOUS']}") self.frame_np_ready.emit(frame_copy) print("✅ frame_np_ready signal emitted successfully") except Exception as e: print(f"❌ Error emitting frame: {e}") import traceback traceback.print_exc() # Emit QPixmap for video detection tab (frame_ready) try: from PySide6.QtGui import QImage, QPixmap rgb_frame = cv2.cvtColor(annotated_frame, cv2.COLOR_BGR2RGB) h, w, ch = rgb_frame.shape bytes_per_line = ch * w qimg = QImage(rgb_frame.data, w, h, bytes_per_line, QImage.Format_RGB888) pixmap = QPixmap.fromImage(qimg) metrics = { 'FPS': fps_smoothed, 'Detection (ms)': detection_time } self.frame_ready.emit(pixmap, detections, metrics) print("✅ frame_ready signal emitted for video detection tab") except Exception as e: print(f"❌ Error emitting frame_ready: {e}") import traceback traceback.print_exc() # Emit stats signal for performance monitoring stats = { 'fps': fps_smoothed, 'detection_fps': fps_smoothed, # Numeric value for analytics 'detection_time': detection_time, 'detection_time_ms': detection_time, # Numeric value for analytics 'traffic_light_color': self.latest_traffic_light } # Print detailed stats for debugging tl_color = "unknown" if isinstance(self.latest_traffic_light, dict): tl_color = self.latest_traffic_light.get('color', 'unknown') elif isinstance(self.latest_traffic_light, str): tl_color = self.latest_traffic_light print(f"đŸŸĸ Stats Updated: FPS={fps_smoothed:.2f}, Inference={detection_time:.2f}ms, Traffic Light={tl_color}") # Emit stats signal self.stats_ready.emit(stats) # --- Ensure analytics update every frame --- if hasattr(self, 'analytics_controller') and self.analytics_controller is not None: try: self.analytics_controller.process_frame_data(frame, detections, stats) print("[DEBUG] Called analytics_controller.process_frame_data for analytics update") except Exception as e: print(f"[ERROR] Could not update analytics: {e}") # Control processing rate for file sources if isinstance(self.source, str) and self.source_fps > 0: frame_duration = time.time() - process_start if frame_duration < frame_time: time.sleep(frame_time - frame_duration) cap.release() except Exception as e: print(f"Video processing error: {e}") import traceback traceback.print_exc() finally: self._running = False def _process_frame(self): """Process current frame for display with improved error handling""" try: self.mutex.lock() if self.current_frame is None: print("âš ī¸ No frame available to process") self.mutex.unlock() # Check if we're running - if not, this is expected behavior if not self._running: return # If we are running but have no frame, create a blank frame with error message h, w = 480, 640 # Default size blank_frame = np.zeros((h, w, 3), dtype=np.uint8) cv2.putText(blank_frame, "No video input", (w//2-100, h//2), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 0, 255), 2) # Emit this blank frame try: self.frame_np_ready.emit(blank_frame) except Exception as e: print(f"Error emitting blank frame: {e}") return # Make a copy of the data we need try: frame = self.current_frame.copy() detections = self.current_detections.copy() if self.current_detections else [] violations = [] # Violations are disabled metrics = self.performance_metrics.copy() except Exception as e: print(f"Error copying frame data: {e}") self.mutex.unlock() return self.mutex.unlock() except Exception as e: print(f"Critical error in _process_frame initialization: {e}") import traceback traceback.print_exc() try: self.mutex.unlock() except: pass return try: # --- Simplified frame processing for display --- # The violation logic is now handled in the main _run thread # This method just handles basic display overlays annotated_frame = frame.copy() # Add performance overlays and debug markers - COMMENTED OUT for clean video display # annotated_frame = draw_performance_overlay(annotated_frame, metrics) # cv2.circle(annotated_frame, (20, 20), 10, (255, 255, 0), -1) # Convert BGR to RGB before display (for PyQt/PySide) frame_rgb = cv2.cvtColor(annotated_frame, cv2.COLOR_BGR2RGB) # Display the RGB frame in the UI (replace with your display logic) # Example: self.image_label.setPixmap(QPixmap.fromImage(QImage(frame_rgb.data, w, h, QImage.Format_RGB888))) except Exception as e: print(f"Error in _process_frame: {e}") import traceback traceback.print_exc() def _cleanup_old_vehicle_data(self, current_track_ids): """ Clean up tracking data for vehicles that are no longer being tracked. This prevents memory leaks and improves performance. Args: current_track_ids: Set of currently active track IDs """ # Find IDs that are no longer active old_ids = set(self.vehicle_history.keys()) - set(current_track_ids) if old_ids: print(f"[CLEANUP] Removing tracking data for {len(old_ids)} old vehicle IDs: {sorted(old_ids)}") for old_id in old_ids: # Remove from history and status tracking if old_id in self.vehicle_history: del self.vehicle_history[old_id] if old_id in self.vehicle_statuses: del self.vehicle_statuses[old_id] print(f"[CLEANUP] Now tracking {len(self.vehicle_history)} active vehicles") # --- Removed unused internal violation line detection methods and RedLightViolationSystem usage --- def play(self): """Alias for start(), for UI compatibility.""" self.start()