Files
2025-08-26 13:24:53 -07:00
..
2025-08-26 13:24:53 -07:00
2025-08-26 13:24:53 -07:00
2025-08-26 13:24:53 -07:00
2025-08-26 13:07:59 -07:00
2025-08-26 13:24:53 -07:00
2025-08-26 13:24:53 -07:00
2025-08-26 13:24:53 -07:00
2025-08-26 13:24:53 -07:00
2025-08-26 13:24:53 -07:00
2025-08-26 13:24:53 -07:00
2025-08-26 13:24:53 -07:00
2025-08-26 13:24:53 -07:00
2025-08-26 13:07:59 -07:00
2025-08-26 13:24:53 -07:00
2025-08-26 13:24:53 -07:00
2025-08-26 13:24:53 -07:00
2025-08-26 13:24:53 -07:00
2025-08-26 13:24:53 -07:00
2025-08-26 13:07:59 -07:00
2025-08-26 13:24:53 -07:00
2025-08-26 13:24:53 -07:00
2025-08-26 13:24:53 -07:00
2025-08-26 13:24:53 -07:00

PySide6 Traffic Monitoring Dashboard (Advanced)

Features

  • Real-time video detection (OpenVINO, YOLO)
  • Drag-and-drop video/image, webcam, RTSP
  • Live overlays (bounding boxes, labels, violations)
  • Analytics: trends, histograms, summary cards
  • Violations: searchable, filterable, snapshot preview
  • Export: CSV/JSON, config editor, reload/apply
  • Sidebar: device, thresholds, toggles, dark/light mode
  • Performance overlay: CPU, RAM, FPS, backend
  • Modern UI: QSS, icons, rounded corners, animations

Structure

qt_app_pyside/
├── main.py
├── ui/
│   ├── main_window.py
│   ├── live_tab.py
│   ├── analytics_tab.py
│   ├── violations_tab.py
│   ├── export_tab.py
│   └── config_panel.py
├── controllers/
│   ├── video_controller.py
│   ├── analytics_controller.py
│   └── performance_overlay.py
├── utils/
│   ├── helpers.py
│   └── annotation_utils.py
├── resources/
│   ├── icons/
│   ├── style.qss
│   └── themes/
│       ├── dark.qss
│       └── light.qss
├── config.json
├── requirements.txt

Usage

  1. Install requirements: pip install -r requirements.txt

  2. Run the application (several options):

    • Recommended: Use the enhanced controller: python run_app.py
    • Standard mode: python main.py

Enhanced Features

The application now includes an enhanced video controller that is automatically activated at startup:

  • Async Inference Pipeline: Better frame rate and responsiveness
  • FP16 Precision: Optimized for CPU performance
  • Separate FPS Tracking: UI and detection metrics are tracked separately
  • Auto Model Selection: Uses optimal model based on device (yolo11n for CPU, yolo11x for GPU)
  • OpenVINO Embedder: Optimized DeepSORT tracking with OpenVINO backend

Integration

  • Plug in your detection logic from detection_openvino.py and violation_openvino.py in the controllers.
  • Use config.json for all parameters.
  • Extend UI/controllers for advanced analytics, export, and overlays.

Troubleshooting

If you encounter import errors:

  • Try running with python run_app.py which handles import paths automatically
  • Ensure you have all required dependencies installed
  • Check that the correct model files exist in the openvino_models directory