Files
Traffic-Intersection-Monito…/qt_app_pyside1/utils/crosswalk_utils2.py

337 lines
15 KiB
Python
Raw Blame History

print("<EFBFBD> [CROSSWALK_UTILS2] This is d:/Downloads/finale6/Khatam final/khatam/qt_app_pyside/utils/crosswalk_utils2.py LOADED")
import cv2
import numpy as np
from typing import Tuple, Optional
def detect_crosswalk_and_violation_line(frame: np.ndarray, traffic_light_position: Optional[Tuple[int, int]] = None, perspective_M: Optional[np.ndarray] = None):
"""
Detects crosswalk (zebra crossing) or fallback stop line in a traffic scene using classical CV.
Args:
frame: BGR image frame from video feed
traffic_light_position: Optional (x, y) of traffic light in frame
perspective_M: Optional 3x3 homography matrix for bird's eye view normalization
Returns:
result_frame: frame with overlays (for visualization)
crosswalk_bbox: (x, y, w, h) or None if fallback used
violation_line_y: int (y position for violation check)
debug_info: dict (for visualization/debugging)
"""
# --- PROCESS CROSSWALK DETECTION REGARDLESS OF TRAFFIC LIGHT ---
print(f"[CROSSWALK DEBUG] Starting crosswalk detection. Traffic light: {traffic_light_position}")
if traffic_light_position is None:
print("[CROSSWALK DEBUG] No traffic light detected, but proceeding with crosswalk detection")
debug_info = {}
orig_frame = frame.copy()
h, w = frame.shape[:2]
# 1. Perspective Normalization (Bird's Eye View)
if perspective_M is not None:
frame = cv2.warpPerspective(frame, perspective_M, (w, h))
debug_info['perspective_warped'] = True
else:
debug_info['perspective_warped'] = False
# 1. Enhanced White Color Filtering (more permissive for zebra stripes)
mask_white = cv2.inRange(frame, (140, 140, 140), (255, 255, 255))
debug_info['mask_white_ratio'] = np.sum(mask_white > 0) / (h * w)
# 2. Grayscale for adaptive threshold
gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
# Enhance contrast for night/low-light
if np.mean(gray) < 80:
gray = cv2.equalizeHist(gray)
debug_info['hist_eq'] = True
else:
debug_info['hist_eq'] = False
# 3. Adaptive threshold (more permissive)
thresh = cv2.adaptiveThreshold(gray, 255, cv2.ADAPTIVE_THRESH_GAUSSIAN_C,
cv2.THRESH_BINARY, 11, 3)
# Combine with color mask
combined = cv2.bitwise_and(thresh, mask_white)
# 4. Better morphology for zebra stripe detection
# Horizontal kernel to connect zebra stripes
kernel_h = cv2.getStructuringElement(cv2.MORPH_RECT, (15, 3))
morph = cv2.morphologyEx(combined, cv2.MORPH_CLOSE, kernel_h, iterations=1)
# Vertical kernel to separate stripes
kernel_v = cv2.getStructuringElement(cv2.MORPH_RECT, (3, 5))
morph = cv2.morphologyEx(morph, cv2.MORPH_OPEN, kernel_v, iterations=1)
# Find contours
contours, _ = cv2.findContours(morph, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
zebra_rects = []
# Focus on lower half of frame where crosswalks typically are
roi_y_start = int(h * 0.4) # Start from 40% down
for cnt in contours:
x, y, w, h_rect = cv2.boundingRect(cnt)
# Skip if in upper part of frame
if y < roi_y_start:
continue
aspect_ratio = w / max(h_rect, 1)
area = w * h_rect
# More permissive criteria for zebra stripe detection
min_area = 300 # Smaller minimum area
max_area = 0.3 * frame.shape[0] * frame.shape[1] # Larger max area
min_aspect = 2.0 # Lower aspect ratio requirement
max_height = 40 # Allow taller stripes
if (aspect_ratio > min_aspect and
min_area < area < max_area and
h_rect < max_height and
w > 50): # Minimum width for zebra stripe
angle = 0 # For simplicity, assume horizontal stripes
zebra_rects.append((x, y, w, h_rect, angle))
print(f"[CROSSWALK DEBUG] Found {len(zebra_rects)} zebra stripe candidates")
# --- Enhanced Grouping and Scoring for Crosswalk Detection ---
def group_score(group):
if len(group) < 2: # Reduced minimum requirement
return 0
heights = [r[3] for r in group]
x_centers = [r[0] + r[2]//2 for r in group]
y_centers = [r[1] + r[3]//2 for r in group]
# Stripe count (normalized) - more permissive
count_score = min(len(group) / 4, 1.0) # Reduced from 6 to 4
# Height consistency
if len(heights) > 1:
height_score = 1.0 - min(np.std(heights) / (np.mean(heights) + 1e-6), 1.0)
else:
height_score = 0.5
# Horizontal alignment (zebra stripes should be roughly aligned)
if len(y_centers) > 1:
y_score = 1.0 - min(np.std(y_centers) / (h * 0.1), 1.0)
else:
y_score = 0.5
# Regular spacing between stripes
if len(group) >= 3:
x_sorted = sorted([r[0] for r in group])
gaps = [x_sorted[i+1] - x_sorted[i] for i in range(len(x_sorted)-1)]
gap_consistency = 1.0 - min(np.std(gaps) / (np.mean(gaps) + 1e-6), 1.0)
else:
gap_consistency = 0.3
# Area coverage (zebra crossing should cover reasonable area)
total_area = sum(r[2] * r[3] for r in group)
area_score = min(total_area / (w * h * 0.05), 1.0) # At least 5% of frame
# Final score (weighted sum)
score = (0.3*count_score + 0.2*height_score + 0.2*y_score +
0.15*gap_consistency + 0.15*area_score)
return score
# 4. More flexible grouping
crosswalk_bbox = None
violation_line_y = None
if len(zebra_rects) >= 2: # Reduced minimum requirement from 3 to 2
# Sort by y-coordinate for grouping
zebra_rects = sorted(zebra_rects, key=lambda r: r[1])
# Group stripes that are horizontally aligned
y_tolerance = int(h * 0.08) # Increased tolerance to 8%
groups = []
if zebra_rects:
group = [zebra_rects[0]]
for rect in zebra_rects[1:]:
# Check if this stripe is roughly at the same y-level as the group
group_y_avg = sum(r[1] for r in group) / len(group)
if abs(rect[1] - group_y_avg) < y_tolerance:
group.append(rect)
else:
if len(group) >= 2: # Reduced from 3 to 2
groups.append(group)
group = [rect]
# Don't forget the last group
if len(group) >= 2:
groups.append(group)
# Score all groups
scored_groups = [(group_score(g), g) for g in groups]
# More permissive threshold
scored_groups = [(s, g) for s, g in scored_groups if s > 0.05] # Reduced from 0.1
print(f"[CROSSWALK DEBUG] Found {len(groups)} potential crosswalk groups")
print(f"[CROSSWALK DEBUG] scored_groups: {[round(s, 3) for s, _ in scored_groups]}")
if scored_groups:
scored_groups.sort(reverse=True, key=lambda x: x[0])
best_score, best_group = scored_groups[0]
print(f"[CROSSWALK DEBUG] Best crosswalk group score: {best_score:.3f}")
print(f"[CROSSWALK DEBUG] Best group has {len(best_group)} stripes")
# Calculate crosswalk bounding box
xs = [r[0] for r in best_group] + [r[0] + r[2] for r in best_group]
ys = [r[1] for r in best_group] + [r[1] + r[3] for r in best_group]
x1, x2 = min(xs), max(xs)
y1, y2 = min(ys), max(ys)
crosswalk_bbox = (x1, y1, x2 - x1, y2 - y1)
# Place violation line just before the crosswalk
violation_line_y = y1 - 15 # 15 pixels before crosswalk starts
debug_info['crosswalk_group'] = best_group
debug_info['crosswalk_score'] = best_score
debug_info['crosswalk_bbox'] = crosswalk_bbox
print(f"[CROSSWALK DEBUG] CROSSWALK DETECTED at bbox: {crosswalk_bbox}")
print(f"[CROSSWALK DEBUG] Violation line at y={violation_line_y}")
else:
print("[CROSSWALK DEBUG] No valid crosswalk groups found")
# --- Fallback: Improved Stop line detection ---
if crosswalk_bbox is None:
# Enhanced edge detection for stop lines
edges = cv2.Canny(gray, 50, 150, apertureSize=3)
# Focus on lower half of frame where stop lines typically are
roi_height = int(h * 0.6) # Lower 60% of frame
roi_y = h - roi_height
roi_edges = edges[roi_y:h, :]
# Detect horizontal lines (stop lines)
lines = cv2.HoughLinesP(roi_edges, 1, np.pi / 180,
threshold=50, minLineLength=100, maxLineGap=30)
stop_lines = []
if lines is not None:
for l in lines:
x1, y1, x2, y2 = l[0]
# Convert back to full frame coordinates
y1 += roi_y
y2 += roi_y
# Check if line is horizontal (stop line characteristic)
angle = np.degrees(np.arctan2(y2 - y1, x2 - x1))
line_length = np.sqrt((x2-x1)**2 + (y2-y1)**2)
if (abs(angle) < 15 or abs(angle) > 165) and line_length > 80:
stop_lines.append((x1, y1, x2, y2))
debug_info['stop_lines'] = stop_lines
print(f"[CROSSWALK DEBUG] stop_lines: {len(stop_lines)} found")
if stop_lines:
# Choose the best stop line based on traffic light position or bottom-most line
if traffic_light_position:
tx, ty = traffic_light_position
# Find line closest to traffic light but below it
valid_lines = [l for l in stop_lines if ((l[1]+l[3])//2) > ty + 50]
if valid_lines:
best_line = min(valid_lines, key=lambda l: abs(((l[1]+l[3])//2) - (ty + 100)))
else:
best_line = min(stop_lines, key=lambda l: abs(((l[1]+l[3])//2) - ty))
else:
# Use the bottom-most horizontal line as stop line
best_line = max(stop_lines, key=lambda l: max(l[1], l[3]))
x1, y1, x2, y2 = best_line
crosswalk_bbox = None
# Place violation line slightly above the detected stop line
violation_line_y = min(y1, y2) - 10
debug_info['stop_line'] = best_line
print(f"[CROSSWALK DEBUG] using stop_line: {best_line}")
print(f"[CROSSWALK DEBUG] violation line placed at y={violation_line_y}")
# Draw violation line on the frame for visualization
result_frame = orig_frame.copy()
if violation_line_y is not None:
print(f"[CROSSWALK DEBUG] Drawing VIOLATION LINE at y={violation_line_y}")
result_frame = draw_violation_line(result_frame, violation_line_y,
color=(0, 0, 255), thickness=8,
style='solid', label='VIOLATION LINE')
return result_frame, crosswalk_bbox, violation_line_y, debug_info
def draw_violation_line(frame: np.ndarray, y: int, color=(0, 0, 255), thickness=8, style='solid', label='Violation Line'):
"""
Draws a thick, optionally dashed, labeled violation line at the given y-coordinate.
Args:
frame: BGR image
y: y-coordinate for the line
color: BGR color tuple
thickness: line thickness
style: 'solid' or 'dashed'
label: Optional label to draw above the line
Returns:
frame with line overlay
"""
import cv2
h, w = frame.shape[:2]
x1, x2 = 0, w
overlay = frame.copy()
if style == 'dashed':
dash_len = 30
gap = 20
for x in range(x1, x2, dash_len + gap):
x_end = min(x + dash_len, x2)
cv2.line(overlay, (x, y), (x_end, y), color, thickness, lineType=cv2.LINE_AA)
else:
cv2.line(overlay, (x1, y), (x2, y), color, thickness, lineType=cv2.LINE_AA)
# Blend for semi-transparency
cv2.addWeighted(overlay, 0.7, frame, 0.3, 0, frame)
# Draw label
if label:
font = cv2.FONT_HERSHEY_SIMPLEX
text_size, _ = cv2.getTextSize(label, font, 0.8, 2)
text_x = max(10, (w - text_size[0]) // 2)
text_y = max(0, y - 12)
cv2.rectangle(frame, (text_x - 5, text_y - text_size[1] - 5), (text_x + text_size[0] + 5, text_y + 5), (0,0,0), -1)
cv2.putText(frame, label, (text_x, text_y), font, 0.8, color, 2, cv2.LINE_AA)
return frame
def get_violation_line_y(frame, traffic_light_bbox=None, crosswalk_bbox=None):
"""
Returns the y-coordinate of the violation line using the following priority:
1. Crosswalk bbox (most accurate)
2. Stop line detection via image processing (CV)
3. Traffic light bbox heuristic
4. Fallback (default)
"""
height, width = frame.shape[:2]
# 1. Crosswalk bbox
if crosswalk_bbox is not None and len(crosswalk_bbox) == 4:
return int(crosswalk_bbox[1]) - 15
# 2. Stop line detection (CV)
roi_height = int(height * 0.4)
roi_y = height - roi_height
roi = frame[roi_y:height, 0:width]
gray = cv2.cvtColor(roi, cv2.COLOR_BGR2GRAY)
binary = cv2.adaptiveThreshold(
gray, 255, cv2.ADAPTIVE_THRESH_GAUSSIAN_C,
cv2.THRESH_BINARY, 15, -2
)
kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (15, 1))
processed = cv2.morphologyEx(binary, cv2.MORPH_CLOSE, kernel)
contours, _ = cv2.findContours(processed, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
stop_line_candidates = []
for cnt in contours:
x, y, w, h = cv2.boundingRect(cnt)
aspect_ratio = w / max(h, 1)
normalized_width = w / width
if (aspect_ratio > 5 and normalized_width > 0.3 and h < 15 and y > roi_height * 0.5):
abs_y = y + roi_y
stop_line_candidates.append((abs_y, w))
if stop_line_candidates:
stop_line_candidates.sort(key=lambda x: x[1], reverse=True)
return stop_line_candidates[0][0]
# 3. Traffic light bbox heuristic
if traffic_light_bbox is not None and len(traffic_light_bbox) == 4:
traffic_light_bottom = traffic_light_bbox[3]
traffic_light_height = traffic_light_bbox[3] - traffic_light_bbox[1]
estimated_distance = min(5 * traffic_light_height, height * 0.3)
return min(int(traffic_light_bottom + estimated_distance), height - 20)
# Example usage:
# bbox, vline, dbg = detect_crosswalk_and_violation_line(frame, (tl_x, tl_y), perspective_M)