Files
Traffic-Intersection-Monito…/qt_app_pyside1/utils/annotation_utils.py

305 lines
10 KiB
Python

import cv2
import numpy as np
from PySide6.QtGui import QImage, QPixmap
from PySide6.QtCore import Qt
from typing import Dict, List, Any
# Color mapping for traffic-related classes
COLORS = {
'person': (255, 165, 0), # Orange
'bicycle': (255, 0, 255), # Magenta
'car': (0, 255, 0), # Green
'motorcycle': (255, 255, 0), # Cyan
'bus': (0, 0, 255), # Red
'truck': (0, 128, 255), # Orange-Blue
'traffic light': (0, 165, 255), # Orange
'stop sign': (0, 0, 139), # Dark Red
'parking meter': (128, 0, 128), # Purple
'default': (0, 255, 255) # Yellow as default
}
VIOLATION_COLORS = {
'red_light_violation': (0, 0, 255), # Red
'stop_sign_violation': (0, 100, 255), # Orange-Red
'speed_violation': (0, 255, 255), # Yellow
'lane_violation': (255, 0, 255), # Magenta
'default': (255, 0, 0) # Red as default
}
def draw_detections(frame: np.ndarray, detections: List[Dict],
draw_labels: bool = True, draw_confidence: bool = True) -> np.ndarray:
"""
Draw detection bounding boxes on the frame.
Args:
frame: Input video frame
detections: List of detection dictionaries
draw_labels: Whether to draw class labels
draw_confidence: Whether to draw confidence scores
Returns:
Annotated frame
"""
if frame is None or not isinstance(frame, np.ndarray):
return np.zeros((300, 300, 3), dtype=np.uint8)
annotated_frame = frame.copy()
for det in detections:
if 'bbox' not in det:
continue
try:
bbox = det['bbox']
if not isinstance(bbox, (list, tuple)) or len(bbox) < 4:
continue
x1, y1, x2, y2 = map(int, bbox)
if x1 >= x2 or y1 >= y2:
continue
class_name = det.get('class_name', 'unknown')
confidence = det.get('confidence', 0.0)
track_id = det.get('track_id', None)
# Get color based on class
color = COLORS.get(class_name.lower(), COLORS['default'])
# Draw bounding box
cv2.rectangle(annotated_frame, (x1, y1), (x2, y2), color, 2)
# Prepare label text
label_text = ""
if draw_labels:
label_text += class_name
if track_id is not None:
label_text += f" #{track_id}"
if draw_confidence and confidence > 0:
label_text += f" {confidence:.2f}"
# Draw label background
if label_text:
text_size = cv2.getTextSize(label_text, cv2.FONT_HERSHEY_SIMPLEX, 0.5, 2)[0]
cv2.rectangle(
annotated_frame,
(x1, y1 - text_size[1] - 8),
(x1 + text_size[0] + 8, y1),
color,
-1
)
cv2.putText(
annotated_frame,
label_text,
(x1 + 4, y1 - 4),
cv2.FONT_HERSHEY_SIMPLEX,
0.5,
(255, 255, 255),
2
)
except Exception as e:
print(f"Error drawing detection: {e}")
return annotated_frame
def draw_violations(frame: np.ndarray, violations: List[Dict]) -> np.ndarray:
"""
Draw violation indicators on the frame.
(Currently disabled - just returns the original frame)
Args:
frame: Input video frame
violations: List of violation dictionaries
Returns:
Annotated frame
"""
# Violation detection is disabled - simply return the original frame
if frame is None or not isinstance(frame, np.ndarray):
return np.zeros((300, 300, 3), dtype=np.uint8)
# Just return a copy of the frame without drawing violations
return frame.copy()
def draw_performance_metrics(frame: np.ndarray, metrics: Dict) -> np.ndarray:
"""
Draw performance metrics overlay on the frame.
Args:
frame: Input video frame
metrics: Dictionary of performance metrics
Returns:
Annotated frame
"""
if frame is None or not isinstance(frame, np.ndarray):
return np.zeros((300, 300, 3), dtype=np.uint8)
annotated_frame = frame.copy()
height = annotated_frame.shape[0]
# Create semi-transparent overlay
overlay = annotated_frame.copy()
cv2.rectangle(overlay, (10, height - 140), (250, height - 20), (0, 0, 0), -1)
alpha = 0.7
cv2.addWeighted(overlay, alpha, annotated_frame, 1 - alpha, 0, annotated_frame)
# Draw metrics
text_y = height - 120
for metric, value in metrics.items():
text = f"{metric}: {value}"
cv2.putText(
annotated_frame,
text,
(20, text_y),
cv2.FONT_HERSHEY_SIMPLEX,
0.6,
(0, 255, 255),
2
)
text_y += 25
return annotated_frame
def convert_cv_to_qimage(cv_img):
"""
Convert OpenCV image to QImage for display in Qt widgets.
Args:
cv_img: OpenCV image (numpy array)
Returns:
QImage object
"""
if cv_img is None or not isinstance(cv_img, np.ndarray):
return QImage(1, 1, QImage.Format_RGB888)
try:
# Make a copy to ensure the data stays in scope
img_copy = cv_img.copy()
# Convert BGR to RGB
rgb_image = cv2.cvtColor(img_copy, cv2.COLOR_BGR2RGB)
h, w, ch = rgb_image.shape
bytes_per_line = ch * w
# Create QImage - this approach ensures continuous memory layout
# which is important for QImage to work correctly
qimage = QImage(rgb_image.tobytes(), w, h, bytes_per_line, QImage.Format_RGB888)
# Return a copy to ensure it remains valid
return qimage.copy()
except Exception as e:
print(f"Error converting image: {e}")
return QImage(1, 1, QImage.Format_RGB888)
def convert_cv_to_pixmap(cv_img, target_width=None):
"""
Convert OpenCV image to QPixmap for display in Qt widgets.
Args:
cv_img: OpenCV image (numpy array)
target_width: Optional width to resize to (maintains aspect ratio)
Returns:
QPixmap object
"""
try:
if cv_img is None:
print("WARNING: convert_cv_to_pixmap received None image")
empty_pixmap = QPixmap(640, 480)
empty_pixmap.fill(Qt.black)
return empty_pixmap
# Make a copy to ensure the data stays in scope
img_copy = cv_img.copy()
# Convert BGR to RGB directly
rgb_image = cv2.cvtColor(img_copy, cv2.COLOR_BGR2RGB)
h, w, ch = rgb_image.shape
bytes_per_line = ch * w
# Create QImage using tobytes() to ensure a continuous copy is made
# This avoids memory layout issues with numpy arrays
qimg = QImage(rgb_image.tobytes(), w, h, bytes_per_line, QImage.Format_RGB888)
if qimg.isNull():
print("WARNING: Failed to create QImage")
empty_pixmap = QPixmap(640, 480)
empty_pixmap.fill(Qt.black)
return empty_pixmap
# Resize if needed
if target_width and qimg.width() > target_width:
qimg = qimg.scaledToWidth(target_width, Qt.SmoothTransformation)
# Convert to pixmap
pixmap = QPixmap.fromImage(qimg)
if pixmap.isNull():
print("WARNING: Failed to create QPixmap from QImage")
empty_pixmap = QPixmap(640, 480)
empty_pixmap.fill(Qt.black)
return empty_pixmap
return pixmap
except Exception as e:
print(f"ERROR in convert_cv_to_pixmap: {e}")
# Return a black pixmap as fallback
empty_pixmap = QPixmap(640, 480)
empty_pixmap.fill(Qt.black)
return empty_pixmap
def resize_frame_for_display(frame: np.ndarray, max_width: int = 1280, max_height: int = 720) -> np.ndarray:
"""
Resize frame for display while maintaining aspect ratio.
Args:
frame: Input video frame
max_width: Maximum display width
max_height: Maximum display height
Returns:
Resized frame
"""
if frame is None:
return np.zeros((300, 300, 3), dtype=np.uint8)
height, width = frame.shape[:2]
# No resize needed if image is already smaller than max dimensions
if width <= max_width and height <= max_height:
return frame
# Calculate scale factor to fit within max dimensions
scale_width = max_width / width if width > max_width else 1.0
scale_height = max_height / height if height > max_height else 1.0
# Use the smaller scale to ensure image fits within bounds
scale = min(scale_width, scale_height)
# Resize using calculated scale
new_width = int(width * scale)
new_height = int(height * scale)
return cv2.resize(frame, (new_width, new_height), interpolation=cv2.INTER_AREA)
def pipeline_with_violation_line(frame: np.ndarray, draw_violation_line_func, violation_line_y: int = None) -> QPixmap:
"""
Example pipeline to ensure violation line is drawn and color order is correct.
Args:
frame: Input BGR frame (np.ndarray)
draw_violation_line_func: Function to draw violation line (should accept BGR frame)
violation_line_y: Y position for the violation line (int)
Returns:
QPixmap ready for display
"""
annotated_frame = frame.copy()
if violation_line_y is not None:
annotated_frame = draw_violation_line_func(annotated_frame, violation_line_y, color=(0, 0, 255), label='VIOLATION LINE')
display_frame = resize_frame_for_display(annotated_frame, max_width=1280, max_height=720)
pixmap = convert_cv_to_pixmap(display_frame)
return pixmap