Files
Traffic-Intersection-Monito…/qt_app_pyside1/utils/crosswalk_utils.py

462 lines
21 KiB
Python

# print("🟡 [CROSSWALK_UTILS] This is d:/Downloads/finale6/Khatam final/khatam/qt_app_pyside/utils/crosswalk_utils.py LOADED")
# import cv2
# import numpy as np
# def detect_crosswalk_and_violation_line(frame, traffic_light_detected=False, perspective_M=None, debug=False):
# """
# Detects crosswalk (zebra crossing) or fallback stop line in a traffic scene using classical CV.
# Only runs crosswalk detection if a traffic light is present in the frame.
# If no traffic light is present, no violation line is drawn or returned.
# Returns:
# result_frame: frame with overlays (for visualization)
# crosswalk_bbox: (x, y, w, h) or None if fallback used
# violation_line_y: int (y position for violation check) or None if not applicable
# debug_info: dict (for visualization/debugging)
# """
# debug_info = {}
# orig_frame = frame.copy()
# h, w = frame.shape[:2]
# if not traffic_light_detected:
# # No traffic light: do not draw or return any violation line
# debug_info['crosswalk_bbox'] = None
# debug_info['violation_line_y'] = None
# debug_info['note'] = 'No traffic light detected, no violation line.'
# return orig_frame, None, None, debug_info
# # 1. Perspective Normalization (Bird's Eye View)
# if perspective_M is not None:
# frame = cv2.warpPerspective(frame, perspective_M, (w, h))
# debug_info['perspective_warped'] = True
# else:
# debug_info['perspective_warped'] = False
# # 2. White Color Filtering (relaxed)
# mask_white = cv2.inRange(frame, (160, 160, 160), (255, 255, 255))
# debug_info['mask_white_ratio'] = np.sum(mask_white > 0) / (h * w)
# # 3. Grayscale for adaptive threshold
# gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
# if np.mean(gray) < 80:
# gray = cv2.equalizeHist(gray)
# debug_info['hist_eq'] = True
# else:
# debug_info['hist_eq'] = False
# # 4. Adaptive threshold (tuned)
# thresh = cv2.adaptiveThreshold(gray, 255, cv2.ADAPTIVE_THRESH_GAUSSIAN_C,
# cv2.THRESH_BINARY, 15, 5)
# combined = cv2.bitwise_and(thresh, mask_white)
# # 5. Morphology (tuned)
# kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (25, 3))
# morph = cv2.morphologyEx(combined, cv2.MORPH_CLOSE, kernel, iterations=1)
# # 6. Find contours for crosswalk bars
# contours, _ = cv2.findContours(morph, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
# zebra_rects = []
# for cnt in contours:
# x, y, rw, rh = cv2.boundingRect(cnt)
# aspect_ratio = rw / max(rh, 1)
# area = rw * rh
# if aspect_ratio > 3 and 1000 < area < 0.5 * h * w and rh < 60:
# zebra_rects.append((x, y, rw, rh))
# # 7. Group crosswalk bars by y (vertical alignment)
# y_tolerance = int(h * 0.05)
# crosswalk_bbox = None
# violation_line_y = None
# if len(zebra_rects) >= 3:
# zebra_rects = sorted(zebra_rects, key=lambda r: r[1])
# groups = []
# group = [zebra_rects[0]]
# for rect in zebra_rects[1:]:
# if abs(rect[1] - group[-1][1]) < y_tolerance:
# group.append(rect)
# else:
# if len(group) >= 3:
# groups.append(group)
# group = [rect]
# if len(group) >= 3:
# groups.append(group)
# # Use the largest group
# if groups:
# best_group = max(groups, key=len)
# xs = [r[0] for r in best_group] + [r[0] + r[2] for r in best_group]
# ys = [r[1] for r in best_group] + [r[1] + r[3] for r in best_group]
# x1, x2 = min(xs), max(xs)
# y1, y2 = min(ys), max(ys)
# crosswalk_bbox = (x1, y1, x2 - x1, y2 - y1)
# violation_line_y = min(y2 + 5, h - 1) # Place just before crosswalk
# # Draw crosswalk region
# overlay = orig_frame.copy()
# cv2.rectangle(overlay, (x1, y1), (x2, y2), (0, 255, 0), -1)
# orig_frame = cv2.addWeighted(overlay, 0.2, orig_frame, 0.8, 0)
# cv2.rectangle(orig_frame, (x1, y1), (x2, y2), (0, 255, 0), 2)
# cv2.putText(orig_frame, "Crosswalk", (10, y1 - 10),
# cv2.FONT_HERSHEY_SIMPLEX, 0.7, (0, 255, 0), 2)
# # --- Fallback: Stop line detection ---
# if crosswalk_bbox is None:
# edges = cv2.Canny(gray, 80, 200)
# lines = cv2.HoughLinesP(edges, 1, np.pi / 180, threshold=80, minLineLength=60, maxLineGap=20)
# stop_lines = []
# if lines is not None:
# for l in lines:
# x1, y1, x2, y2 = l[0]
# angle = np.degrees(np.arctan2(y2 - y1, x2 - x1))
# if abs(angle) < 20 or abs(angle) > 160: # horizontal
# if y1 > h // 2 or y2 > h // 2: # lower half
# stop_lines.append((x1, y1, x2, y2))
# if stop_lines:
# best_line = max(stop_lines, key=lambda l: max(l[1], l[3]))
# x1, y1, x2, y2 = best_line
# violation_line_y = min(y1, y2) - 5
# cv2.line(orig_frame, (0, violation_line_y), (w, violation_line_y), (0, 255, 255), 8)
# cv2.putText(orig_frame, "Fallback Stop Line", (10, violation_line_y - 10),
# cv2.FONT_HERSHEY_SIMPLEX, 0.7, (0, 255, 255), 2)
# else:
# # Final fallback: bottom third
# violation_line_y = int(h * 0.75)
# cv2.line(orig_frame, (0, violation_line_y), (w, violation_line_y), (0, 0, 255), 3)
# cv2.putText(orig_frame, "Default Violation Line", (10, violation_line_y - 10),
# cv2.FONT_HERSHEY_SIMPLEX, 0.7, (0, 0, 255), 2)
# # Always draw the violation line if found
# if violation_line_y is not None and crosswalk_bbox is not None:
# cv2.line(orig_frame, (0, violation_line_y), (w, violation_line_y), (0, 0, 255), 3)
# cv2.putText(orig_frame, "Violation Line", (10, violation_line_y - 10),
# cv2.FONT_HERSHEY_SIMPLEX, 0.7, (0, 0, 255), 2)
# debug_info['crosswalk_bbox'] = crosswalk_bbox
# debug_info['violation_line_y'] = violation_line_y
# return orig_frame, crosswalk_bbox, violation_line_y, debug_info
# def draw_violation_line(frame: np.ndarray, y: int, color=(0, 0, 255), thickness=4, style='solid', label='Violation Line'):
# h, w = frame.shape[:2]
# x1, x2 = 0, w
# overlay = frame.copy()
# if style == 'dashed':
# dash_len = 30
# gap = 20
# for x in range(x1, x2, dash_len + gap):
# x_end = min(x + dash_len, x2)
# cv2.line(overlay, (x, y), (x_end, y), color, thickness, lineType=cv2.LINE_AA)
# else:
# cv2.line(overlay, (x1, y), (x2, y), color, thickness, lineType=cv2.LINE_AA)
# cv2.addWeighted(overlay, 0.7, frame, 0.3, 0, frame)
# if label:
# font = cv2.FONT_HERSHEY_SIMPLEX
# text_size, _ = cv2.getTextSize(label, font, 0.8, 2)
# text_x = max(10, (w - text_size[0]) // 2)
# text_y = max(0, y - 12)
# cv2.rectangle(frame, (text_x - 5, text_y - text_size[1] - 5), (text_x + text_size[0] + 5, text_y + 5), (0,0,0), -1)
# cv2.putText(frame, label, (text_x, text_y), font, 0.8, color, 2, cv2.LINE_AA)
# return frame
# def get_violation_line_y(frame, traffic_light_bbox=None, crosswalk_bbox=None):
# """
# Returns the y-coordinate of the violation line using the following priority:
# 1. Crosswalk bbox (most accurate)
# 2. Stop line detection via image processing (CV)
# 3. Traffic light bbox heuristic
# 4. Fallback (default)
# """
# height, width = frame.shape[:2]
# # 1. Crosswalk bbox
# if crosswalk_bbox is not None and len(crosswalk_bbox) == 4:
# return int(crosswalk_bbox[1]) - 15
# # 2. Stop line detection (CV)
# roi_height = int(height * 0.4)
# roi_y = height - roi_height
# roi = frame[roi_y:height, 0:width]
# gray = cv2.cvtColor(roi, cv2.COLOR_BGR2GRAY)
# binary = cv2.adaptiveThreshold(
# gray, 255, cv2.ADAPTIVE_THRESH_GAUSSIAN_C,
# cv2.THRESH_BINARY, 15, -2
# )
# kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (15, 1))
# processed = cv2.morphologyEx(binary, cv2.MORPH_CLOSE, kernel)
# contours, _ = cv2.findContours(processed, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
# stop_line_candidates = []
# for cnt in contours:
# x, y, w, h = cv2.boundingRect(cnt)
# aspect_ratio = w / max(h, 1)
# normalized_width = w / width
# if (aspect_ratio > 5 and normalized_width > 0.3 and h < 15 and y > roi_height * 0.5):
# abs_y = y + roi_y
# stop_line_candidates.append((abs_y, w))
# if stop_line_candidates:
# stop_line_candidates.sort(key=lambda x: x[1], reverse=True)
# return stop_line_candidates[0][0]
# # 3. Traffic light bbox heuristic
# if traffic_light_bbox is not None and len(traffic_light_bbox) == 4:
# traffic_light_bottom = traffic_light_bbox[3]
# traffic_light_height = traffic_light_bbox[3] - traffic_light_bbox[1]
# estimated_distance = min(5 * traffic_light_height, height * 0.3)
# return min(int(traffic_light_bottom + estimated_distance), height - 20)
# # 4. Fallback
# return int(height * 0.75)
# # Example usage:
# # bbox, vline, dbg = detect_crosswalk_and_violation_line(frame, (tl_x, tl_y), perspective_M)
print("🟡 [CROSSWALK_UTILS]222 This is d:/Downloads/finale6/Khatam final/khatam/qt_app_pyside/utils/crosswalk_utils.py LOADED")
import cv2
import numpy as np
from typing import Tuple, Optional
def detect_crosswalk_and_violation_line(frame: np.ndarray, traffic_light_position: Optional[Tuple[int, int]] = None, perspective_M: Optional[np.ndarray] = None):
"""
Detects crosswalk (zebra crossing) or fallback stop line in a traffic scene using classical CV.
Args:
frame: BGR image frame from video feed
traffic_light_position: Optional (x, y) of traffic light in frame
perspective_M: Optional 3x3 homography matrix for bird's eye view normalization
Returns:
result_frame: frame with overlays (for visualization)
crosswalk_bbox: (x, y, w, h) or None if fallback used
violation_line_y: int (y position for violation check)
debug_info: dict (for visualization/debugging)
"""
debug_info = {}
orig_frame = frame.copy()
h, w = frame.shape[:2]
# 1. Perspective Normalization (Bird's Eye View)
if perspective_M is not None:
frame = cv2.warpPerspective(frame, perspective_M, (w, h))
debug_info['perspective_warped'] = True
else:
debug_info['perspective_warped'] = False
# 1. White Color Filtering (relaxed)
mask_white = cv2.inRange(frame, (160, 160, 160), (255, 255, 255))
debug_info['mask_white_ratio'] = np.sum(mask_white > 0) / (h * w)
# 2. Grayscale for adaptive threshold
gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
# Enhance contrast for night/low-light
if np.mean(gray) < 80:
gray = cv2.equalizeHist(gray)
debug_info['hist_eq'] = True
else:
debug_info['hist_eq'] = False
# 5. Adaptive threshold (tuned)
thresh = cv2.adaptiveThreshold(gray, 255, cv2.ADAPTIVE_THRESH_GAUSSIAN_C,
cv2.THRESH_BINARY, 15, 5)
# Combine with color mask
combined = cv2.bitwise_and(thresh, mask_white)
# 2. Morphology (tuned)
kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (25, 3))
morph = cv2.morphologyEx(combined, cv2.MORPH_CLOSE, kernel, iterations=1)
# Find contours
contours, _ = cv2.findContours(morph, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
zebra_rects = []
for cnt in contours:
x, y, w, h = cv2.boundingRect(cnt)
aspect_ratio = w / max(h, 1)
area = w * h
angle = 0 # For simplicity, assume horizontal stripes
# Heuristic: wide, short, and not too small
if aspect_ratio > 3 and 1000 < area < 0.5 * frame.shape[0] * frame.shape[1] and h < 60:
zebra_rects.append((x, y, w, h, angle))
cv2.rectangle(orig_frame, (x, y), (x+w, y+h), (0, 255, 0), 2)
# --- Overlay drawing for debugging: draw all zebra candidates ---
for r in zebra_rects:
x, y, rw, rh, _ = r
cv2.rectangle(orig_frame, (x, y), (x+rw, y+rh), (0, 255, 0), 2)
# Draw all zebra candidate rectangles for debugging (no saving)
for r in zebra_rects:
x, y, rw, rh, _ = r
cv2.rectangle(orig_frame, (x, y), (x+rw, y+rh), (0, 255, 0), 2)
# --- Probabilistic Scoring for Groups ---
def group_score(group):
if len(group) < 3:
return 0
heights = [r[3] for r in group]
x_centers = [r[0] + r[2]//2 for r in group]
angles = [r[4] for r in group]
# Stripe count (normalized)
count_score = min(len(group) / 6, 1.0)
# Height consistency
height_score = 1.0 - min(np.std(heights) / (np.mean(heights) + 1e-6), 1.0)
# X-center alignment
x_score = 1.0 - min(np.std(x_centers) / (w * 0.2), 1.0)
# Angle consistency (prefer near 0 or 90)
mean_angle = np.mean([abs(a) for a in angles])
angle_score = 1.0 - min(np.std(angles) / 10.0, 1.0)
# Whiteness (mean mask_white in group area)
whiteness = 0
for r in group:
x, y, rw, rh, _ = r
whiteness += np.mean(mask_white[y:y+rh, x:x+rw]) / 255
whiteness_score = whiteness / len(group)
# Final score (weighted sum)
score = 0.25*count_score + 0.2*height_score + 0.2*x_score + 0.15*angle_score + 0.2*whiteness_score
return score
# 4. Dynamic grouping tolerance
y_tolerance = int(h * 0.05)
crosswalk_bbox = None
violation_line_y = None
best_score = 0
best_group = None
if len(zebra_rects) >= 3:
zebra_rects = sorted(zebra_rects, key=lambda r: r[1])
groups = []
group = [zebra_rects[0]]
for rect in zebra_rects[1:]:
if abs(rect[1] - group[-1][1]) < y_tolerance:
group.append(rect)
else:
if len(group) >= 3:
groups.append(group)
group = [rect]
if len(group) >= 3:
groups.append(group)
# Score all groups
scored_groups = [(group_score(g), g) for g in groups if group_score(g) > 0.1]
print(f"[CROSSWALK DEBUG] scored_groups: {[s for s, _ in scored_groups]}")
if scored_groups:
scored_groups.sort(reverse=True, key=lambda x: x[0])
best_score, best_group = scored_groups[0]
print("Best group score:", best_score)
# Visualization for debugging
debug_vis = orig_frame.copy()
for r in zebra_rects:
x, y, rw, rh, _ = r
cv2.rectangle(debug_vis, (x, y), (x+rw, y+rh), (255, 0, 255), 2)
for r in best_group:
x, y, rw, rh, _ = r
cv2.rectangle(debug_vis, (x, y), (x+rw, y+rh), (0, 255, 255), 3)
cv2.imwrite(f"debug_crosswalk_group.png", debug_vis)
# Optionally, filter by vanishing point as before
# ...existing vanishing point code...
xs = [r[0] for r in best_group] + [r[0] + r[2] for r in best_group]
ys = [r[1] for r in best_group] + [r[1] + r[3] for r in best_group]
x1, x2 = min(xs), max(xs)
y1, y2 = min(ys), max(ys)
crosswalk_bbox = (x1, y1, x2 - x1, y2 - y1)
violation_line_y = y2 - 5
debug_info['crosswalk_group'] = best_group
debug_info['crosswalk_score'] = best_score
debug_info['crosswalk_angles'] = [r[4] for r in best_group]
# --- Fallback: Stop line detection ---
if crosswalk_bbox is None:
edges = cv2.Canny(gray, 80, 200)
lines = cv2.HoughLinesP(edges, 1, np.pi / 180, threshold=80, minLineLength=60, maxLineGap=20)
stop_lines = []
if lines is not None:
for l in lines:
x1, y1, x2, y2 = l[0]
angle = np.degrees(np.arctan2(y2 - y1, x2 - x1))
if abs(angle) < 20 or abs(angle) > 160: # horizontal
if y1 > h // 2 or y2 > h // 2: # lower half
stop_lines.append((x1, y1, x2, y2))
debug_info['stop_lines'] = stop_lines
print(f"[CROSSWALK DEBUG] stop_lines: {len(stop_lines)} found")
if stop_lines:
if traffic_light_position:
tx, ty = traffic_light_position
best_line = min(stop_lines, key=lambda l: abs(((l[1]+l[3])//2) - ty))
else:
best_line = max(stop_lines, key=lambda l: max(l[1], l[3]))
x1, y1, x2, y2 = best_line
crosswalk_bbox = None
violation_line_y = min(y1, y2) - 5
debug_info['stop_line'] = best_line
print(f"[CROSSWALK DEBUG] using stop_line: {best_line}")
# Draw fallback violation line overlay for debugging (no saving)
if crosswalk_bbox is None and violation_line_y is not None:
print(f"[DEBUG] Drawing violation line at y={violation_line_y} (frame height={orig_frame.shape[0]})")
if 0 <= violation_line_y < orig_frame.shape[0]:
orig_frame = draw_violation_line(orig_frame, violation_line_y, color=(0, 255, 255), thickness=8, style='solid', label='Fallback Stop Line')
else:
print(f"[WARNING] Invalid violation line position: {violation_line_y}")
# --- Manual overlay for visualization pipeline test ---
# Removed fake overlays that could overwrite the real violation line
print(f"[CROSSWALK DEBUG] crosswalk_bbox: {crosswalk_bbox}, violation_line_y: {violation_line_y}")
return orig_frame, crosswalk_bbox, violation_line_y, debug_info
def draw_violation_line(frame: np.ndarray, y: int, color=(0, 255, 255), thickness=8, style='solid', label='Violation Line'):
"""
Draws a thick, optionally dashed, labeled violation line at the given y-coordinate.
Args:
frame: BGR image
y: y-coordinate for the line
color: BGR color tuple
thickness: line thickness
style: 'solid' or 'dashed'
label: Optional label to draw above the line
Returns:
frame with line overlay
"""
import cv2
h, w = frame.shape[:2]
x1, x2 = 0, w
overlay = frame.copy()
if style == 'dashed':
dash_len = 30
gap = 20
for x in range(x1, x2, dash_len + gap):
x_end = min(x + dash_len, x2)
cv2.line(overlay, (x, y), (x_end, y), color, thickness, lineType=cv2.LINE_AA)
else:
cv2.line(overlay, (x1, y), (x2, y), color, thickness, lineType=cv2.LINE_AA)
# Blend for semi-transparency
cv2.addWeighted(overlay, 0.7, frame, 0.3, 0, frame)
# Draw label
if label:
font = cv2.FONT_HERSHEY_SIMPLEX
text_size, _ = cv2.getTextSize(label, font, 0.8, 2)
text_x = max(10, (w - text_size[0]) // 2)
text_y = max(0, y - 12)
cv2.rectangle(frame, (text_x - 5, text_y - text_size[1] - 5), (text_x + text_size[0] + 5, text_y + 5), (0,0,0), -1)
cv2.putText(frame, label, (text_x, text_y), font, 0.8, color, 2, cv2.LINE_AA)
return frame
def get_violation_line_y(frame, traffic_light_bbox=None, crosswalk_bbox=None):
"""
Returns the y-coordinate of the violation line using the following priority:
1. Crosswalk bbox (most accurate)
2. Stop line detection via image processing (CV)
3. Traffic light bbox heuristic
4. Fallback (default)
"""
height, width = frame.shape[:2]
# 1. Crosswalk bbox
if crosswalk_bbox is not None and len(crosswalk_bbox) == 4:
return int(crosswalk_bbox[1]) - 15
# 2. Stop line detection (CV)
roi_height = int(height * 0.4)
roi_y = height - roi_height
roi = frame[roi_y:height, 0:width]
gray = cv2.cvtColor(roi, cv2.COLOR_BGR2GRAY)
binary = cv2.adaptiveThreshold(
gray, 255, cv2.ADAPTIVE_THRESH_GAUSSIAN_C,
cv2.THRESH_BINARY, 15, -2
)
kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (15, 1))
processed = cv2.morphologyEx(binary, cv2.MORPH_CLOSE, kernel)
contours, _ = cv2.findContours(processed, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
stop_line_candidates = []
for cnt in contours:
x, y, w, h = cv2.boundingRect(cnt)
aspect_ratio = w / max(h, 1)
normalized_width = w / width
if (aspect_ratio > 5 and normalized_width > 0.3 and h < 15 and y > roi_height * 0.5):
abs_y = y + roi_y
stop_line_candidates.append((abs_y, w))
if stop_line_candidates:
stop_line_candidates.sort(key=lambda x: x[1], reverse=True)
return stop_line_candidates[0][0]
# 3. Traffic light bbox heuristic
if traffic_light_bbox is not None and len(traffic_light_bbox) == 4:
traffic_light_bottom = traffic_light_bbox[3]
traffic_light_height = traffic_light_bbox[3] - traffic_light_bbox[1]
estimated_distance = min(5 * traffic_light_height, height * 0.3)
return min(int(traffic_light_bottom + estimated_distance), height - 20)
# 4. Fallback
return int(height * 0.75)
# Example usage:
# bbox, vline, dbg = detect_crosswalk_and_violation_line(frame, (tl_x, tl_y), perspective_M)