Files
Traffic-Intersection-Monito…/qt_app_pyside1/readme1.md

9.4 KiB

🚦 Qt Traffic Monitoring Application - Detailed File Contents Analysis

📁 Project Overview

Location: D:\Downloads\finale6\khatam\qt_app_pyside\
Type: PySide6-based Traffic Monitoring System with Real-time AI Violation Detection


🚀 Main Application Entry Points

main.py (52 lines)

  • Purpose: Primary application launcher
  • Contents: QApplication setup, splash screen integration, MainWindow loading
  • Key Features: Error handling for UI loading, fallback mechanisms
  • Imports: PySide6.QtWidgets, splash screen utilities

launch.py (44 lines)

  • Purpose: Enhanced launcher using subprocess
  • Contents: Subprocess-based app launching to avoid encoding issues
  • Key Features: Path validation, error handling, cross-platform compatibility
  • Functionality: Checks main.py existence before launching

run_app.py (115 lines)

  • Purpose: Environment preparation and path fixing
  • Contents: Import path verification, missing file creation, fallback handling
  • Key Features: Dynamic path fixing, init.py creation, enhanced_annotation_utils verification
  • Debugging: Comprehensive path and import checking

enhanced_main_window.py (131 lines)

  • Purpose: Main window controller patch for enhanced video processing
  • Contents: EnhancedVideoController integration, import fallbacks
  • Key Features: Advanced controller switching, compatibility layer
  • Architecture: MVC pattern enhancement

🖥️ User Interface Layer (ui/ Directory)

main_window.py (641 lines)

  • Purpose: Primary application window framework
  • Contents: QMainWindow implementation, tab management, menu system
  • Key Components: LiveTab, AnalyticsTab, ViolationsTab, ExportTab, ConfigPanel
  • Features: Settings management, configuration loading, performance overlay integration

live_tab.py

  • Purpose: Real-time video monitoring interface
  • Contents: Video stream display, control buttons, status indicators
  • Features: Multi-source support, real-time violation overlay

fixed_live_tab.py

  • Purpose: Stabilized version of live video display
  • Contents: Bug fixes for video rendering, improved stability
  • Improvements: Memory leak fixes, thread safety

enhanced_simple_live_display.py

  • Purpose: Optimized live video rendering component
  • Contents: Hardware-accelerated rendering, reduced latency display
  • Features: GPU acceleration, frame buffering

simple_live_display.py

  • Purpose: Basic video display component
  • Contents: Standard OpenCV video rendering
  • Usage: Fallback display when enhanced features unavailable

analytics_tab.py

  • Purpose: Violation analytics and reporting dashboard
  • Contents: Charts, graphs, violation statistics, trend analysis
  • Features: Real-time data visualization, export capabilities

violations_tab.py

  • Purpose: Detailed violation management interface
  • Contents: Violation list, filtering, detailed view, evidence management
  • Features: Search, sort, export individual violations

export_tab.py

  • Purpose: Data export and reporting functionality
  • Contents: Multiple export formats, report generation, scheduling
  • Formats: PDF, CSV, JSON, video clips

config_panel.py

  • Purpose: System configuration interface
  • Contents: Camera settings, detection parameters, model selection
  • Features: Real-time parameter adjustment, configuration validation

🎮 Controllers Layer (controllers/ Directory)

enhanced_video_controller.py (687 lines)

  • Purpose: Advanced video processing with AI integration
  • Contents: Async inference, FPS tracking, OpenVINO integration
  • Key Features:
    • OpenVINOVehicleDetector integration
    • Traffic light color detection
    • Enhanced annotation utilities
    • Performance monitoring
    • Thread-safe processing

video_controller.py & video_controller_new.py

  • Purpose: Standard and upgraded video stream management
  • Contents: Video capture, frame processing, detection pipeline
  • Features: Multiple video sources, recording capabilities

analytics_controller.py

  • Purpose: Violation data analysis and reporting controller
  • Contents: Data aggregation, statistical analysis, trend calculation
  • Features: Real-time analytics, database integration

model_manager.py

  • Purpose: AI model loading and management
  • Contents: Model initialization, switching, performance optimization
  • Models Supported: OpenVINO, ONNX, PyTorch models

performance_overlay.py

  • Purpose: Real-time performance monitoring display
  • Contents: FPS counter, memory usage, CPU/GPU utilization
  • Features: Live system metrics, performance alerts

red_light_violation_detector.py

  • Purpose: Specialized red light detection logic
  • Contents: Traffic light state detection, violation triggering
  • Algorithm: HSV color detection, temporal analysis

🛠️ Utility Modules (utils/ Directory)

annotation_utils.py & enhanced_annotation_utils.py

  • Purpose: Video annotation and overlay functions
  • Contents: Bounding box drawing, text overlay, color coding
  • Functions:
    • enhanced_draw_detections()
    • draw_performance_overlay()
    • enhanced_cv_to_qimage()
    • enhanced_cv_to_pixmap()

traffic_light_utils.py

  • Purpose: Traffic light state detection algorithms
  • Contents: HSV color space analysis, circle detection
  • Functions:
    • detect_traffic_light_color()
    • draw_traffic_light_status()

crosswalk_utils.py

  • Purpose: Crosswalk area detection and analysis
  • Contents: Edge detection, template matching, polygon definition
  • Features: Dynamic crosswalk boundary detection

embedder_openvino.py

  • Purpose: OpenVINO model embedder for inference acceleration
  • Contents: Model optimization, feature extraction
  • Features: Hardware acceleration, batch processing

helpers.py

  • Purpose: Common utility functions
  • Contents: Configuration loading, file I/O, data conversion
  • Functions: load_configuration(), save_configuration(), save_snapshot()

🤖 AI Models & Processing Files

mobilenetv2.bin & mobilenetv2.xml

  • Purpose: OpenVINO MobileNetV2 model files
  • Contents: Pre-trained weights and network architecture
  • Usage: Feature extraction, object classification

mobilenetv2_embedder/ (Directory)

  • Purpose: Feature extraction utilities for MobileNetV2
  • Contents: Embedding generation, similarity calculation

red_light_violation_pipeline.py

  • Purpose: Specialized red light detection pipeline
  • Contents: End-to-end red light violation detection
  • Features: Auto-learned stop lines, Kalman filtering

⚙️ Configuration & Setup Files

config.json

  • Purpose: Main application configuration
  • Contents: Camera settings, detection thresholds, model paths
  • Structure: JSON format with nested configuration objects

requirements.txt

  • Purpose: Python dependencies specification
  • Contents: Required packages with version numbers
  • Packages: PySide6, OpenCV, NumPy, OpenVINO, PyTorch

🎨 Resources (resources/ Directory)

splash.png

  • Purpose: Application splash screen image
  • Format: PNG image file
  • Usage: Displayed during application startup

style.qss

  • Purpose: Qt stylesheet for application theming
  • Contents: CSS-like styling rules for UI components
  • Features: Dark theme, custom colors, responsive design

generate_resources.py

  • Purpose: Resource generation and compilation script
  • Contents: QRC file processing, resource compilation

icons/ & themes/ (Directories)

  • Purpose: UI graphics and visual configurations
  • Contents: Application icons, theme files, visual assets

🧪 Testing & Development Files

test_redlight_violation.py

  • Purpose: Red light detection testing and validation
  • Contents: Unit tests, integration tests, performance benchmarks
  • Features: Automated testing, result validation

kernel.errors.txt

  • Purpose: Error logging and debugging information
  • Contents: Runtime errors, stack traces, debug output
  • Usage: Troubleshooting and development

present.md

  • Purpose: Presentation documentation
  • Contents: Project overview, feature highlights, demo scripts

update_controller.py

  • Purpose: Controller update and management utilities
  • Contents: Dynamic controller switching, version management

📊 Complete File Summary

  • Total Files: 60+ across all directories
  • Main Application: 4 entry point files
  • UI Components: 11 interface files
  • Controllers: 8 processing files
  • Utilities: 7 helper modules
  • AI Models: 3 model files + embedder directory
  • Violation Detection: 20+ specialized detection files
  • Configuration: 4 config/setup files
  • Resources: 4 asset directories
  • Testing: 4 development/testing files

Total Code: ~8,000+ lines of production-ready Python code with comprehensive AI integration, real-time processing, and modular architecture.